基于参数自寻优变分模态分解的信号降噪方法

何成兵1,车其祥1,徐振华2,于庆彬3,董玉亮1,程睿翔1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 283-293.

PDF(1834 KB)
PDF(1834 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 283-293.
论文

基于参数自寻优变分模态分解的信号降噪方法

  • 何成兵1,车其祥1,徐振华2,于庆彬3,董玉亮1,程睿翔1
作者信息 +

Signal denoising method based on parametric self-optimizing VMD

  • HE Chengbing1, CHE Qixiang1, XU Zhenhua2, YU Qingbin3, DONG Yuliang1, CHENG Ruixiang1
Author information +
文章历史 +

摘要

针对滚动轴承故障信号具有非线性、非平稳、噪声强的特点,提出了一种基于参数自寻优变分模态分解的信号降噪方法。以模态复合熵作为适应度函数,采用改进粒子群算法进行VMD参数自适应寻优,确定VMD最优模态数K和二次惩罚因子α;基于最优K和α,对原始信号进行VMD分解,得到K个本征模态函数(IMF)分量;利用相关系数筛选法,进行模态分量的有效模态和含噪模态识别,利用小波阈值去噪方法对含噪模态进行去噪处理;将有效模态与去噪后的模态进行重构,实现信号降噪。分别用滚动轴承故障仿真信号和实验信号进行验证,并与EMD降噪方法进行比较,结果表明该方法可有效提高故障信号的信噪比,降噪效果明显,有利于滚动轴承故障特征的提取。

Abstract

Aiming at the characteristics of nonlinear, nonstationary and strong noise of rolling bearing fault signal, a signal denoising method based on parameter self optimizing Variational Modal Decomposition(VMD) was proposed. Taking the modal compound entropy as the fitness function, the improved particle swarm optimization algorithm(IPSO) was used to adaptively optimize the parameters of VMD, and the optimal mode number K and the second penalty factor α of VMD were determined. Based on the optimal K and α,VMD was used to decompose the original signal and obtain K intrinsic mode function (IMF) components. The correlation coefficient screening method was used to identify the effective modes and noisy modes of IMFs, and the wavelet threshold denoising method was used to denoise the noisy modes. The effective mode and the denoised mode were reconstructed to realize signal noise reduction. The feasibility of the proposed method was validated using both the numerical simulation and practical experimental signal of rolling bearing. Moreover,compared with EMD signal denoising method, the proposed method can effectively improve the signal-to-noise ratio of the fault signal, and the noise reduction effect is obvious, which is conducive to the fault feature extraction of the rolling bearing.

关键词

变分模态分解 / 改进粒子群算法 / 参数自寻优 / 信号降噪 / 滚动轴承

Key words

variational modal decomposition(VMD) / improved particle swarm optimization(IPSO) / parameter self optimizing / signal denoising / rolling bearing

引用本文

导出引用
何成兵1,车其祥1,徐振华2,于庆彬3,董玉亮1,程睿翔1. 基于参数自寻优变分模态分解的信号降噪方法[J]. 振动与冲击, 2023, 42(19): 283-293
HE Chengbing1, CHE Qixiang1, XU Zhenhua2, YU Qingbin3, DONG Yuliang1, CHENG Ruixiang1. Signal denoising method based on parametric self-optimizing VMD[J]. Journal of Vibration and Shock, 2023, 42(19): 283-293

参考文献

[1]  张爽,王晓东,李祥,等.基于FVMD的滚动轴承故障特征提取方法[J].振动与冲击,2022,41(06):236-244.
ZHANG Shuang, WANG Xiao-dong, LI Xiang, et al. Extraction method of rolling bearing fault characteristics based on FVMD[J]. Journal of Vibration and Shock, 2022, 41 (06): 236-244.
[2]  曹玲玲,李晶,彭镇,等.基于改进小波阈值降噪的滚动轴承故障诊断方法[J].振动工程学报,2022,35(02): 454-463.
CAO Lingling, LI jing, PENG Zhen, et al. Rolling bearing fault diagnosis method based on improved wavelet threshold denoising[J]. Journal of Vibration Engineering, 2022, 35(02): 454-463.
[3]  Malla C,  Rai A,  Panigrahi I. Rolling element bearing fault detection based on the complex Morlet wavelet transform and performance evaluation using artificial neural network and support vector machine[J]. Noise & Vibration Worldwide, 2019, 50(9-11): 313-27
[4]  王奉涛,邓刚,王洪涛,等.基于EMD和SSAE的滚动轴承故障诊断方法[J].振动工程学报,2019,32(02): 368-376.
WANG Fengtao, DENG Gang, WANG Hongtao, et al. A rolling bearing fault diagnosis method based on EMD and SSAE[J]. Journal of Vibration Engineering, 2019, 32(02): 368-376.
[5]  李思琦,蒋志坚.基于EEMD-CNN的滚动轴承故障诊断方法[J].机械强度,2020,42(05):1033-1038.
LI Siqi, JIANG Zhijian. Fault diagnosis method of rolling bearing based on EEMD-CNN[J]. Journal of Mechanical Strength, 2020, 42(05): 1033-1038.
[6]  Yin C, Wang Y, Ma G, et al. Weak fault feature extraction of rolling bearings based on improved ensemble noise reconstructed EMD and adaptive threshold denoising[J]. Mechanical Systems and Signal Processing, 2022, 171, 108834.
[7]  Wang Y, Markert R, Xiang J, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing, 2015, 60:243-251.
[8]  朵慕社,纪国宜,朱海龙,等.基于VMD降噪和CNN的轴承故障诊断[J].噪声与振动控制, 2021, 41(05): 155-160.
DUO Mushe, JI Guoyi, ZHU Hailong, et al. Bearing fault diagnosis based on VMD noise reduction and CNN[J]. Noise and Vibration Control, 2021, 41(05):155-160.
[9]  郑义,岳建海,焦静,等.基于参数优化变分模态分解的滚动轴承故障特征提取方法[J].振动与冲击,2021, 40(01):86-94.
ZHENG Yi, YUE Jianhai, JIAO Jing, et al. Fault feature extraction method of rolling bearing based on parameter optimized VMD[J]. Journal of Vibration and Shock, 2021, 40(01): 86-94.
[10] 胡爱军,白泽瑞,赵军.参数优化VMD结合1.5维谱的滚动轴承复合故障特征分离方法[J].振动与冲击, 2020, 39 (11): 45 -52+62.
HU Aijun, BAI Zerui, ZHAO Jun. Compound fault features separation method of rolling bearing based on parameter optimization VMD and 1.5 dimension spectrum[J]. Journal of Vibration and Shock, 2020, 39(11): 45-52+62.
[11] 王朝阁,李宏坤,曹顺心,等.改进VMD和非凸重叠组收缩降噪的行星齿轮箱早期故障特征提取[J].振动工程学报, 2021, 34(06): 1293-1304.
WANG Chaoge, LI Hongkun, CAO Shunxin, et al. Incipient fault feature extraction of planetary gearbox based on modified VMD and non-convex overlap group shrinkage denoising[J]. Journal of Vibration Engineering, 2021, 34(06): 1293-1304.
[12] Qiao M, Tang X, Liu Y, et al. Fault diagnosis method of rolling bearings based on VMD and MDSVM[J]. Multimedia Tools and Applications, 2021, 80(10): 14521-14544.
[13] Zhang M, Jiang Z, Feng K. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump[J]. Mechanical Systems and Signal Processing, 2017, 93:460-493.
[14] Hua Z, Xiao Y, Cao J. Misalignment fault prediction of wind turbines based on improved artificial fish swarm algorithm [J]. ENTROPY, 2021, 23(6), 692.
[15] Hu B, Guo C, Wu J, et al. An adaptive periodical stochastic resonance method based on the grey wolf optimizer algorithm and its application in rolling bearing fault diagnosis[J]. Journal of Vibration and Acoustics, 2019, 141(4), 041016.
[16] Zhou C, Ma J, Wu J, et al. A parameter adaptive MOMEDA method based on grasshopper optimization algorithm to extract fault features[J]. Mathematical Problems in Engineering, 2019, 7182539.
[17] 陈鹏,赵小强.基于优化VMD与改进阈值降噪的滚动轴承早期故障特征提取[J].振动与冲击,2021,40 (13): 146-153.
CHEN Peng, ZHAO Xiaoqiang. Early fault feature extraction of rolling bearing based on optimized VMD and improved threshold denoising[J]. Journal of Vibration and Shock, 2021, 40(13): 146-153.
[18] Qin Y, Jin L, Zhang A, et al. Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-12.
[19] Ma Z, Lu F, Liu S, et al. A parameter-adaptive ACMD method based on particle swarm optimization algorithm for rolling bearing fault diagnosis under variable speed[J]. Journal of Mechanical Science and Technology, 2021, 35(5): 1851-65.
[20] 郑圆,胡建中,贾民平,等.一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J].振动与冲击, 2020, 39(21): 195-202.
ZHENG Yuan, HU Jianzhong, JIA Minping, et al. A method for rolling bearing fault feature extraction based on parametric optimization VMD[J]. Journal of Vibration and Shock, 2020, 39(21): 195-202.

PDF(1834 KB)

Accesses

Citation

Detail

段落导航
相关文章

/