首先,针对一种扭簧驱动的双绳控固面天线,建立了基于欧拉-拉格朗日方程的天线展开动力学模型,研究了绳索张力对天线展开运动参数的影响。其次,对绳控天线反射面系统的完整展开过程进行动力学仿真,得到的仿真中的展开情况与数值计算结果相符,验证了理论模型的正确性。最后,为了使天线反射面充分展开,采用序列二次规划算法(Sequential Quadratic Programming),分别在无绳和有绳控制系统中,对驱动扭簧进行优化设计,通过优化使得展开更为合理并减少了反射面的展开包络空间。研究表明,通过引入绳索系统能够提高天线展开过程的稳定性,有效降低了各铰链关节处的负载峰值。研究结果可为绳控固面天线的展开过程设计提供理论指导,并具有实际工程意义。
Abstract
Firstly, aiming at a torsion-spring driven double-cable controlled solid-surface antenna, the dynamic model based on the Euler-Lagrange equation was established. The influence of cable tension on deploying motion parameters was studied. Secondly, the complete deployment process of the cable-controlled reflective surface system was dynamically simulated. The simulation results was consistent with the numerical calculation results, which verified the correctness of the theoretical model. Lastly, in order to fully expand the reflective surface of the antenna system, the SQP algorithm was used to optimize the driving torsion spring in the cable-free and cable control systems. Optimization made the deployment more reasonable and reduced the unfolding envelope space. It was shown that the introduction of the cable system could improve the stability of the deployment process and effectively reduce the load peak at each hinge joint. The research results could provide theoretical guidance for the deploying process design of cable-controlled solid-surface antennas and have practical engineering significance.
关键词
固面天线 /
多体动力学 /
可展开天线 /
绳索机构 /
优化设计
{{custom_keyword}} /
Key words
solid surface antenna /
multi-body dynamics /
deployable antenna /
cable pulley mechanism /
optimization design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘荣强,史 创,郭宏伟,et al. 空间可展开天线机构研究与展望[J]. 机械工程学报,2020, 56(5):1-12.
Liu Rong-qiang, Shi Chuang, Guo Hong-wei,et al. Review of space deployment anenna mechanisms[J]. Chinese Journal of Mechanical Engineering, 2020, 56(5):1-12.
[2] 刘 建,赵海奇. 大型空间可展开天线结构设计与技术分析[J]. 无线互联科技,2022, 19(9): 7-9.
Liu Jian, Zhao Hai-qi. Structural design and technical analysis of large space deployable antenna[J]. Wireless Internet Technology. 2022, 19(9): 7-9.
[3] 罗阿妮,刘贺平,李 杨,et al. 花瓣式可展天线的结构分析[J]. 中国机械工程,2012, 23(14): 1656-1658.
Luo A-ni, Liu He-ping, Li Yang,et al. Structural analysis of flowerlike deployable antenna[J]. China Mechanical Engineering. 2012, 23(14): 1656-1658.
[4] 郭宏伟,王建东,刘荣强,et al. 固面天线可展开机构设计及动力学分析[J]. 哈尔滨工业大学学报,2019, 51(07):1-8.
Guo Hong-wei, Wang Jian-dong, Liu Rong-qiang,et al. Design and dynamic analysis of deployable mechanism for solid surface antenna[J]. Journal of Harbin Institute of Technology, 2019, 51(07):1-8.
[5] 李团结,张 琰,李 涛. 周边桁架可展天线展开过程动力学分析及控制[J]. 航空学报,2009, 30(3): 444-449.
Li Tuan-jie, Zhang Yan, Li Tao. Deployment dynamic analysis and control of hoop truss deployable antenna[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 444-449.
[6] 任伟峰,何柏岩,聂 锐. 环形桁架天线展开动力学分析[J]. 中国机械工程,2019, 30(24): 2945-2952.
Ren Wei-feng, He Bai-yan, Nie Rui. Deplyment forward dynamics analysis of hoop truss antennas[J]. China Mechanical Engineering, 2019, 30(24): 2945-2952.
[7] Li B, Qi X, Huang H,et al. Modeling and analysis of deployment dynamics for a novel ring mechanism[J]. Acta Astronautica, 2016, 120(Mar.-Apr.): 59-74.
[8] 蔡友慧. 大型空间可展开固面天线的动力学与型面精度分析[D]. 南京:南京航空航天大学,2019.
Cai You-hui. Dynamics and surface accuracy analysis of large space deployable solid surface antenna[D]. Nanjing: Nanjing University of Astronautics and Aeronautics, 2019.
[9] 齐晓志. 环形桁架式可展开天线机构设计及展开动力学研究[D]. 哈尔滨:哈尔滨工业大学,2016.
Qi Xiao-zhi. Design and deployment dynamics of ring truss-type deployable antenna mechanism[D]. Harbin: Harbin Institute of Technology, 2016.
[10] 王辉,何天宇,都显琛,et al. 单元构架式抛物面天线张紧绳索多层设计方法[J]. 北京航空航天大学学报,2022, 48(4):8.
Wang Hui, He Tian-yu, Du-Xianchen,et al. Multi-layer design method of tension rope for paraboloid antenna[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4):8.
[11] 张大羽,马小飞,王辉,et al. .环柱式天线展开过程耦合动力学分析[J]. 宇航学报,2022,43(07):880-889.
Zhang Da-yu, Ma Xiao-fei, Wang Hui,et al. Coupling dynamics analysis of rod-cable antenna deployment[J]. Journal of Chinese Society of Astronautics, 2022,43(07):880-889.
[12] Yang Z, Zhao J. Deformation analysis of spatial deployable antenna hinge subjected to cable force[C]//CIBDA 2022; 3rd International Conference on Computer Information and Big Data Applications. VDE, 2022: 1-4.
[13] Wallrapp O, Wiedemann S. Simulation of deployment of a flexible solar array[J]. Multibody System Dynamics, 2002, 7(1): 101-125.
[14] 杨文淼,时军委. 太阳帆板联动机构同步机理分析与动力优化[J]. 宇航学报,2017,38(04):338-343.
Yang Wen-miao, Shi Jun-wei. Principle of CCL synchronous deployment and dynamic optimization of solar panel[J]. Journal of Chinese Society of Astronautics, 2017,38(04):338-343.
[15] Fliege J, Vaz A I F. A method for constrained multiobjective optimization based on SQP techniques[J]. SIAM Journal on Optimization, 2016, 26(4): 2091-2119.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}