带内置可旋转隔板的调谐液体阻尼器减振性能试验研究

张蓝方1,谢壮宁1,周子杰1,彭肇才2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 64-69.

PDF(1957 KB)
PDF(1957 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 64-69.
论文

带内置可旋转隔板的调谐液体阻尼器减振性能试验研究

  • 张蓝方1,谢壮宁1,周子杰1,彭肇才2
作者信息 +

Test study on vibration reduction performance of tuned liquid damper with built-in rotatable baffles

  • ZHANG Lanfang1, XIE Zhuangning1, ZHOU Zijie1, PENG Zhaocai2
Author information +
文章历史 +

摘要

本文对带内置可旋转隔板调谐液体阻尼器(TLD)进行了振动台试验,首先对波高响应信号进行解耦分离,再采用不同方法识别液体晃动的模态频率和阻尼比,研究了隔板安装位置、隔板和晃动方向夹角()对TLD减振性能的影响。结果表明,受隔板附加质量和耗能作用的影响,TLD的1阶模态频率和相应的模态响应随的增大而减小,但隔板附加模态质量对频率的影响还不足以达到导致系统失谐的程度。当小于60°时,TLD的1阶模态阻尼比随的变化而单调递增,最大可达到8%左右;当大于60°时,隔板所产生的阻尼作用弱化了1阶模态响应使晃动呈高阶模态形式,从而导致晃动频率大幅增大,这个结果和已有研究认为TLD晃动模态频率随着角度增加而逐步增大的结论有本质差别,意味着不能通过改变大小的方式来实现TLD的调谐,但改变 可比较容易调节TLD的阻尼比使其达到振动控制所需要的最佳值。

Abstract

The performance of tuned liquid damper (TLD) with rotatable baffles is investigated using shaking table tests. The measured response of wave height is decoupled and then the modal frequency and damping ratio are identified by different parameter identification methods. The influence of baffle location and angle () between the baffle and the direction of fluid sloshing on TLD performance is considered. The results show that the modal frequency and corresponding modal response of TLD decrease with the increase of due to the influence of the added mass and energy dissipation of the baffles, but the influence of the added mass on the frequency is not enough to cause the TLD’s mistuning. When  is less than 60°, the damping ratio increases monotonically with the change of  up to about 8%. When  is greater than 60°, the damping effect generated by the baffles reduces the first-order modal response and makes the sloshing in the form of the high-order mode, resulting in a significant increase of the sloshing frequency. This result is essentially different from the existing finding that the modal frequency of TLD increases gradually with the increase of , which means that the tuning of TLD cannot be realized by changing . However, changing  can easily adjust the damping ratio of TLD to achieve the optimal value required for the vibration control.

关键词

调谐液体阻尼器 / 可旋转隔板 / 振动台试验 / 模态解耦 / 性能参数

Key words

tuned liquid damper / rotatable baffle / shaking table test / mode decoupling / performance parameter.

引用本文

导出引用
张蓝方1,谢壮宁1,周子杰1,彭肇才2. 带内置可旋转隔板的调谐液体阻尼器减振性能试验研究[J]. 振动与冲击, 2023, 42(19): 64-69
ZHANG Lanfang1, XIE Zhuangning1, ZHOU Zijie1, PENG Zhaocai2. Test study on vibration reduction performance of tuned liquid damper with built-in rotatable baffles[J]. Journal of Vibration and Shock, 2023, 42(19): 64-69

参考文献

[1] 鲁正, 王贤林, 何任飞, 等. 一种组合型质量阻尼器的振动台试验研究[J]. 振动与冲击, 2018, 37(12):220-225.
LU Zheng, WANG Xianlin, HE Renfei, et al. An experimetntal study on shaking table test of a combined mass damper[J]. Journal of vibration and shock, 2018, 37(12):220-225.
[2] 盛涛, 金红亮, 李京, 等. 液体质量双调谐阻尼器(TLMD)的设计方法研究[J]. 振动与冲击, 2017, 36(08):197-202.
SHENG Tao, JIN Hongliang, LI Jing, et al. A study on the design method of tuned liquid and mass damper (TLMD)[J]. Journal of vibration and shock, 2017, 36(08):197-202.
[3] 何浩祥, 闫维明, 陈彦江. 考虑涡旋效应的圆柱形TLD多维减震效果研究[J]. 振动与冲击, 2012, 31(06):126-130.
HE Haoxiang, YAN Weiming, CHEN Yanjiang. Multi-dimensional seismic control of cylindrical TLD considering vortex effect[J]. Journal of vibration and shock, 2012, 31(06):126-130.
[4]. 黄东阳, 谭平, 尹飞, 等. 内置横向圆柱体TLD的动力特性分析[J]. 振动与冲击, 2009, 28(10):169-173+233.
HUANG Dongyang, TAN Ping, YIN Fei, et al. Dynamic characteristics analysis of a TLD with an embedded transverse cylinder[J]. Journal of vibration and shock, 2009, 28(10):169-173+233.
[5] Love J S, Morava B, Smith A W. Monitoring of a Tall Building Equipped with an Efficient Multiple-Tuned Sloshing Damper System[J]. Practice Periodical on Structural Design and Construction, 2020, 25(3):05020003.
[6] 瞿伟廉, 陈妍桂. TLD对珠海金山大厦主楼风振控制的设计[J]. 建筑结构学报, 1995, 16(3):21-28.
QU Weilian, CHEN Yangui. Design of wind vibration control for main building of Jinshan building in Zhuhai by TLD[J]. Journal of Building Structures, 1995, 16(3):21-28.
[7] Love J S, Haskett T C, Morava B. Effectiveness of dynamic vibration absorbers implemented in tall buildings[J]. Engineering Structures, 2018, 176:776-784.
[8] Tait M J, Damatty A, Isyumov N, et al. Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens[J]. Journal of Fluids & Structures, 2005, 20(8):1007-1023.
[9] Cassolato M R, Love J S, Tait M J. Modelling of a tuned liquid damper with inclined damping screens[J]. Structural Control & Health Monitoring, 2011, 18(6):674-681.
[10] 谭平, 尹飞, 黄东阳, 等. 内置挡板调谐液体阻尼器的减振性能研究[J]. 广州大学学报:自然科学版, 2011, 10(4):5.
TAN Ping, YIN Fei, HUANG Dongyang, et al. Study on performance of a new TLD with embedded baffles[J]. Journal of Guangzhou University (Natural Science Edition), 2011, 10(4):5.
[11] 钟文坤, 吴玖荣. 内置有挡板的矩形水箱阻尼比估算方法比较分析[J]. 工程力学, 2020, 37(6):10.
ZHONG Wenkun, WU Jiurong. Comparative analysis on estimation methods for the damping ratios of rectangular water tanks with baffles[J]. Engineering mechanics, 2020, 37(6):10.
[12] Jung J H, Yoon H S, Lee C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44:79-89.
[13] Goudarzi M A, Sabbagh-Yazdi S R. Analytical and experimental evaluation on the effectiveness of upper mounted baffles with respect to commonly used baffles[J]. Ocean Engineering, 2012, 42:205-217.
[14] Zahrai S M, Abbasi S, Samali B, et al. Experimental investigation of utilizing TLD with baffles in a scaled down 5-story benchmark building[J]. Journal of Fluids & Structures, 2012, 28:194-210.
[15] Love J S, Haskett T C. Nonlinear modelling of tuned sloshing dampers with large internal obstructions: Damping and frequency effects[J]. Journal of Fluids & Structures, 2018, 79:1-13.
[16] 建筑结构风振控制技术标准:JGJ/T 487-2020:2020[S]. 北京:中国建筑工业出版社,2020.
Technical standard for control of building vibration with wind load: JGJ/T 487-2020:2020[S]. Beijing: China Architecture & Building Press, 2020.
[17] Lamb H. Hydrodynamics[M]. Cambridge: Cambridge University Press, 1932.
[18] 张蓝方, 谢壮宁, 张乐乐, 等. 调谐液体阻尼器性能参数的检测方法、系统、设备和介质: CN111751070B[P]. 2021-07-20.
[19] Zhang L, Xie Z, Yu X. Method for Decoupling and Correction of Dynamical Signals in High-Frequency Force Balance Tests[J]. Journal of Structural Engineering, 2018, 144(12).
[20] 潘浩然, 谢壮宁. 改进贝叶斯谱密度法及其在超高层结构振动模态参数识别中的应用[J]. 建筑结构学报, 2016, 37(12):27-32.
Pan Haoran, Xie Zhuangning. Modified Bayesian spectral density approach and its application to modal parameter identification of super-tall building[J]. Journal of Building Structures, 2016, 37(12):27-32.

PDF(1957 KB)

352

Accesses

0

Citation

Detail

段落导航
相关文章

/