深海立管顺流与横流耦合涡激振动中的内流效应分析

赵桂欣1,孟帅1,车驰东1,赵创业2,张文龙2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 7-13.

PDF(2031 KB)
PDF(2031 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 7-13.
论文

深海立管顺流与横流耦合涡激振动中的内流效应分析

  • 赵桂欣1,孟帅1,车驰东1,赵创业2,张文龙2
作者信息 +

Internal flow effect in IL-CF coupled VIV of deep-sea risers

  • ZHAO Guixin1, MENG Shuai1, CHE Chidong1, ZHAO Chuangye2, ZHANG Wenlong2
Author information +
文章历史 +

摘要

深海立管因长径比大幅增加导致柔性增强、内流效应凸显,其在顺流和横流耦合涡激振动中的内流效应尚未得到很好理解。采用半经验时域涡激振动水动力模型,建立深海立管在均匀洋流下的横向和纵向耦合振动方程,并利用有限元法求解,探究不同内流速度、内流密度和洋流下立管在顺流和横流耦合涡激振动中的内流效应。研究发现,当洋流速度和内流密度一定时,(1)内流效应可使系统固有频率降低,因此随着内流速度增加,顺流和横流涡激主导频率可能脱离激励区,主导模态转移到高阶,同时主导频率发生阶跃增加;(2)立管横向位移均方根最大值是增加还是减少取决于横向涡激主导频率是接近还是远离涡脱频率;(3)当横流向涡激振动主导模态不变时,由于内流效应可以降低系统刚度,顺流向的静态位移随着内流速度的增加而逐步增加。当横流向主导模态转移至高阶时,顺流向的曳力系数会发生突然减少导致静态位移呈现阶跃性下降。(4)内流效应对顺流向振动有着不可忽略的影响。立管顺流向振动响应是内流效应、拖曳力(受横流向涡激响应影响)和顺流向涡激流体力联合作用的结果。

Abstract

With the great increase of aspect ratio, the flexibility of a deep-water marine riser is enhanced and IFE (Internal Flow Effect) becomes remarkable inevitably. However, the IFE on the coupled IL (In-line) and CF (Cross-Flow) VIV (Vortex-Induced Vibration) of deep-water marine risers has not been well understood. The dynamic motion equations of a flexible riser subject to an incoming current is established, in which a semi-empirical VIV hydrodynamic model is employed. The VIV responses of a flexible riser at different internal flow velocities, internal flow densities and current velocities are examined. It has demonstrated that (1) the internal flow induced centrifugal force can decrease the natural frequencies. With the increase of internal flow velocity, the CF/IL dominant excitation frequency can leave the excitation region. Then the CF/IL dominant mode transfers to a higher order companied by a jump increase of the dominant frequency. (2) Whether the maximum value of the CF RMS displacement is increased or decreased depends on whether the CF dominant frequency approaches or departs from the vortex shedding frequency; (3) The centrifugal force can decrease the system stiffness and the IL static deformation increases with the increase of internal flow velocity. Once the CF dominant mode switch occurs, the static deformation has a jump decrease ascribed to the sudden reduction of the drag coefficient. (4) The IFE has a non-negligible effect on the IL dynamic response, which is affected by the resultant effects of the internal flow, the drag force (depending on the CF VIV response) and IL vortex shedding force.

关键词

内流效应 / 横流向涡激振动 / 主导模态转移 / 顺流向静态位移 / 顺流向振动响应

Key words

IFE / CF VIVs / dominant mode translate / IL static deformation / IL vibration response

引用本文

导出引用
赵桂欣1,孟帅1,车驰东1,赵创业2,张文龙2. 深海立管顺流与横流耦合涡激振动中的内流效应分析[J]. 振动与冲击, 2023, 42(19): 7-13
ZHAO Guixin1, MENG Shuai1, CHE Chidong1, ZHAO Chuangye2, ZHANG Wenlong2. Internal flow effect in IL-CF coupled VIV of deep-sea risers[J]. Journal of Vibration and Shock, 2023, 42(19): 7-13

参考文献

[1] Liu G J, Li H Y, Qiu Z Z, et al. A mini review of recent progress on vortex-induced vibrations of marine risers[J]. Ocean Engineering, 2020, 195: 106704.
[2] 高云,任铁,付世晓,等. 柔性立管涡激振动响应特性试验研究[J]. 振动与冲击,2015(17):6-11.
GAO Yun, REN Tie, FU Shi-xiao, et al.Tests for response characteristics of VIV of a flexible riser[J]. Journal of vibration and shock, 2015(17):6-11.
[3] Fu S X, Wang J G, Baarholm R, et al. Features of vortex-induced vibration in oscillatory flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(1): 011801.
[4] Zhang C, Kang Z, Stoesser T, et al. Experimental investigation on the VIV of a slender body under the combination of uniform flow and top-end surge[J]. Ocean Engineering,2020, 216: 108094.
[5] Gao Y, Pan G H, Meng S, et al. Time-domain prediction of the coupled cross-flow and in-line vortex-induced vibrations of a flexible cylinder using a wake oscillator model[J].Ocean Engineering,2021, 237: 109631.
[6] Thorsen M J, Sævik S, Larsen C M. A simplified method for time domain simulation of cross-flow vortex-induced vibrations[J]. Journal of Fluids and Structures, 2014,49: 135-148.
[7] Vandiver J K, Li L. SHEAR7 program theory manual[M]. Cambridge, MA, Department of Ocean Engineering, MIT, USA,1999.
[8] Zhang M M, Fu S X, Ren H J, et al. A time domain prediction method for vortex-induced vibration of a flexible pipe with time-varying tension[C]. Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering,2018:1-13.
[9] 袁昱超,薛鸿祥,唐文勇.振荡流下柔性立管涡激振动时域响应研究[J].振动与冲击,2018,37(13):56-64+91.
YUAN Yu-chao, XUE Hong-xiang, TANG Wen-yong. Vortex-induced vibration time domain responses of flexible risers under oscillatory flows[J]. Journal of vibration and shock,2018,37(13):56-64+91.
[10] Ashley H, Haviland G. Bending vibrations of a pipeline containing flowing fluid[J]. Journal of Applied Mechanics, 1952, 19(2):205-208.
[11] Païdoussis M P. Fluid-Structure Interactions: Slender Structures and Axial Flow (Vol.1) [M]. Second Ed. San Diego: Academic Press, 2014
[12] 柳博瀚,陈正寿,鲍健,等.管道内流对海洋弹性管振动影响的数值仿真研究[J].振动与冲击,2020,39(17):177-185.
LIU Bo-han, CHEN Zheng-shou, BAO Jian, et al. Numerical simulation for effects of pipeline internal flow on vibration of flexible marine pipe[J]. Journal of vibration and shock, 2020,39(17):177-185.
[13] 段金龙,周济福,王旭,等.剪切流场中含内流立管横向涡激振动特性[J].力学学报, 2021, 53(7): 1876-1884.
DUAN Jin-long, ZHOU Ji-fu, WANG Xu, et al. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876-1884.
[14] 鲍健,陈正寿.细长输流管内外流耦合振动特性研究[J].海洋工程, 2022, 40(2): 78-87.
BAO Jian, CHEN Zheng-shou.Study on coupling vibration characteristics of slender fluid-conveying pipe subject to internal flow and external current[J]. The Ocean Engineering, 2022, 40(2): 78-87.
[15] 孟丹,郭海燕.深水钢悬链线立管顺流向非线性动力分析[J]. 船舶力学,2012,16(1):127-135.
MENG Dan, GUO Hai-yan. Nonlinear dynamic analysis of deepwater steel catenary riser in-line vibration[J]. Journal of Ship Mechanics,2012,16(1):127-135.
[16] 徐万海,余建星,刘健,等. 海底悬跨输流管道纯顺流向涡激振动特性研究[J]. 船舶力学,2013, 17(12):1481-1489.
XU Wan-hai, YU Jian-xing, LIU Jian, et al. Pure in-line vortex induced-vibrations of a free spanning pipeline conveying internal fluid[J]. Journal of Ship Mechanics,2013, 17(12): 1481-1489.
[17] Meng, S., Zhang, X., Che, C., Zhang, W., 2017. Cross-flow vortex-induced vibration of a flexible riser transporting an internal flow from subcritical to supercritical. Ocean Eng. 139, 74–84.
[18] Leng D X, Liu D, Li H Y, et al. Internal flow effect on the cross-flow vortex-induced vibration of marine risers with different support methods[J]. Ocean Engineering, 2022,257: 111487.
[19] Duan J L, Zhou J F, Wang X, et al. Cross-flow vortex-induced vibration of a flexible fluid-conveying riser undergoing external oscillatory flow[J]. Ocean Engineering, 2022, 250: 111030.
[20] Dai H L, Wang L, Qian Q, et al.Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes[J].Journal of Fluids and Structures,2013,39: 322-334.
[21] Duan J L, Zhou J F, You Y X, et al. Time-domain analysis of vortex-induced vibration of a flexible mining riser transporting flow with various velocities and densities[J]. Ocean Engineering, 2021, 220:108427.
[22] Thorsen M J,Sævik S, Larsen C M.Time domain simulation of vortex-induced vibrations in stationary and oscillating flows[J]. Journal of Fluids and Structures,2016,61: 1-19.
[23] Song L J, Fu SX, Dai S Y. Distribution of drag force coefficient along a flexible riser undergoing VIV in sheared flow[J]. Ocean Engineering, 2016,126: 1-11.
[24] Passano E, Larsen C M, Lie H, et al. VIVANA—Theory Manual Version 4.8[M]. Trondheim, Norway, 2016.
[25] Meng, S., Zhang, X., Che, C., Zhang, W., 2017b. Cross-flow vortex-induced vibration of a flexible riser transporting an internal flow from subcritical to supercritical. Ocean Eng. 139, 74–84.
[26] 宋磊建.涡激振动状态下的柔性立管水动力特性研究[D].上海:上海交通大学,2016.
SONG Lei-jian. Investigation on the Hydrodynamics of a Flexible Riser under Vortex Induced Vibration[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[27] Song L J, Fu S X, Cao J, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration[J]. Journal of Fluids and Structures, 2016, 63: 325-350.

PDF(2031 KB)

Accesses

Citation

Detail

段落导航
相关文章

/