HRB400E抗震钢筋拉压循环本构关系

赵卫平1,常昊坛1,郑宏利2,杨虹1,郭飞3,纪强溪1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 79-88.

PDF(5066 KB)
PDF(5066 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 79-88.
论文

HRB400E抗震钢筋拉压循环本构关系

  • 赵卫平1,常昊坛1,郑宏利2,杨虹1,郭飞3,纪强溪1
作者信息 +

Tensile compression cyclic constitutive relation of HRB400E aseismic reinforcement

  • ZHAO Weiping1, CHANG Haotan1, ZHENG Hongli2, YANG Hong1, GUO Fei3, JI Qiangxi1
Author information +
文章历史 +

摘要

对新型抗震钢筋HRB400E进行单调拉伸及循环加载试验,研究其单调性能、滞回性能、延性特征等,为对比抗震钢筋与普通钢材力学性能的区别,同时进行Q355B钢材的单调拉伸及循环加载试验,并基于能量耗散系数评价不同钢材的耗能能力。采用Ramberg-Osgood模型拟合得到两类钢材的循环骨架曲线,进一步探究随动强化参数对数对滞回曲线模拟效果的影响,并根据循环加载试验结果标定得到Voce-Chaboche模型的混合强化参数,利用ANSYS有限元软件对不同加载制度下的滞回曲线进行模拟。结果表明:HRB400E抗震钢筋的能量耗散系数大于普通钢材Q355B,小于高强钢Q460D以及低屈服钢LYP100、LY100、LY160、LY225;循环荷载作用下,抗震钢筋 和普通钢材的材料强度均有明显提升;取4对随动强化参数时,模拟曲线与试验曲线的吻合度最高;采用标定得到的混合强化参数可准确模拟两种钢材在不同循环加载制度下的滞回性能,为今后准确模拟HRB400E钢材在地震作用下的抗震性能提供了参考。

Abstract

The monotonic tensile and cyclic loading tests were carried out on the new seismic steel bar HRB400E to study its monotonic performance, hysteresis performance, and ductility characteristics. In order to compare the mechanical properties of seismic steel bar and ordinary steel, the monotonic tensile and cyclic loading tests of Q355B steel were carried out, and the energy dissipation capacity of different steels was evaluated based on the energy dissipation coefficient. The Rambergg-Osgood model was used to fit the cyclic skeleton curves of the two types of steel, and the influence of the logarithm of the kinematic hardening parameters on the simulation effect of the hysteresis curve was further explored. Mixed hardening parameters of the Voce-Chaboche model were calibrated according to the cyclic loading test results. The hysteresis curves under different loading regimes were simulated by ANSYS finite element software. The results show that the energy dissipation coefficient of HRB400E seismic steel bar is larger than that of ordinary steel Q355B, but smaller than that of high strength steel Q460D and low yield steels LYP100, LY100, LY160, LY225; and under cyclic loading, the material strength of seismic steel and ordinary steel is significantly improved. When taking 4 pairs of kinematic hardening parameters, the simulation curve is in the highest agreement with the experimental curve. The mixed calibration hardening parameters can accurately simulate the hysteretic behavior of the two steels under different cyclic loading regimes, which provides a reference for accurately simulating the seismic performance of HRB400E under earthquake action in the future.

关键词

HRB400E钢筋 / 抗震性能 / 滞回性能 / 循环本构关系 / 有限元分析

Key words

HRB400E steel bar / seismic performance / hysteretic behavior / cyclic constitutive relationship / finite element analysis

引用本文

导出引用
赵卫平1,常昊坛1,郑宏利2,杨虹1,郭飞3,纪强溪1. HRB400E抗震钢筋拉压循环本构关系[J]. 振动与冲击, 2023, 42(19): 79-88
ZHAO Weiping1, CHANG Haotan1, ZHENG Hongli2, YANG Hong1, GUO Fei3, JI Qiangxi1. Tensile compression cyclic constitutive relation of HRB400E aseismic reinforcement[J]. Journal of Vibration and Shock, 2023, 42(19): 79-88

参考文献

[1] NIP K H, GARDNER L, DA VIES C M, et al. Extremely low cycle fatigue tests on structural carbon steel and stainless steel[J]. Journal of Constructional Steel Research, 2010, 66(1):96-110.
[2] SHI Y, WANG M, WANG Y. Experimental and constitutive model study of structural steel under cyclic loading[J]. Steel Construction, 2011, 67(8): 1185-1197.
[3] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(03): 293-300.
SHI Yongjiu, WANG Meng, WANG Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading[J]. Journal of Building Materials, 2012, 15(03): 293-300.
[4] 王元清, 柳晓晨, 戴国欣, 等. 循环荷载作用下SN490B钢材本构关系试验研究[J]. 建筑结构学报, 2014, 35(04): 142-148.
WANG Yuanqing, LIU Xiaochen, DAI Guoxin, et al. Experimental study on constitutive relation of steel SN490B under cyclic loading[J]. Journal of Building Structures, 2014, 35(4): 142-148.
[5] 卫璇, 杨璐, 施刚, 等. AQ315钢材单调与循环加载试验研究[J]. 土木工程学报, 2020, 53(09): 85-92+128. WEI Xuan, YANG Lu, SHI Gang,et al. Experimental study on AQ315 steel under monotonic and cyclic loading[J]. China Civil Engineering Journal, 2020, 53(09): 85-92+128.
[6] 赵卫平, 赵芷迎, 雷永旺, 等. 基于正交试验的框架端节点抗震性能影响因素分析[J]. 振动与冲击, 2021, 40(14): 203-211+227.
ZHAO Weiping, ZHAO Zhiying, LEI Yongwang, et al. Influencing factor analysis on the seismic behaviors of frame exterior joints based on orthogonal experiments[J]. Journal of Vibration and Shock, 2021, 40(14): 203-211+227.
[7] 石永久, 王萌, 王元清. 结构钢材循环荷载下的本构模型研究[J]. 工程力学, 2012, 29(09): 92-98+105.
SHI Yongjiu, WANG Meng, WANG Yuanqing. Research on constitutive model of structural steel under cyclic loading[J]. Engineering Mechanics, 2012, 29(9): 92-98+105.
[8] WANG Y B, LI G Q, SUN X, et al. Evaluation and prediction of cyclic response of Q690D steel[J]. Structures & Buildings, 2017, 170(11): 1-16.
[9] 王元清, 常婷, 石永久. 循环荷载下奥氏体不锈钢的本构关系试验研究[J]. 东南大学学报(自然科学版), 2012, 42(06): 1175-1179.
WANG Yuanqing, CHANG Ting, SHI Yongjiu. Experimental study on constitutive relationship in austenitic stainless steel under cyclic loading[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6): 1175-1179.
[10] WANG M, FAHNESTOCK L A, QIAN F, et al. Experimental cyclic behavior and constitutive modeling of low yield point steels[J]. Construction and Building Materials, 2017, 131: 696-712.
[11] HE Q, CHEN Y, KE K, et al. Experiment and constitutive modeling on cyclic plasticity behavior of LYP100 under large strain range[J]. Construction and Building Materials, 2019, 202(MAR.30): 507-521.
[12] 钢筋混凝土用钢 第2部分: 热轧带肋钢筋: GB/T 1499.2-2018[S]. 北京: 中国建筑工业出版社, 2018.
Steel for the reinforcement of concrete-Part 2: Ribbed bars: GB/T 1499.2-2018[S]. Beijing: China Architecture & Building Press, 2018.
[13] 罗云蓉, 王清远, 付磊, 等. 建筑用抗震钢HRB400EⅢ级钢筋焊接接头的低周疲劳性能[J]. 四川大学学报(工程科学版), 2015, 47(03): 64-70.
LUO Yunrong, WANG Qingyuan, YU Qiang,et al. Low cycle fatigue properties of anti-seismic HRB400 grade Ⅲ reinforcing steel bar[J]. Journal of Iron and Steel Research, 2015, 27(6): 36-40. (in Chinese))
[14] 陈建云, 陆大敏, 莫德凯, 等. 对称拉压循环对HRB400E钢弹塑性行为影响的试验研究[J]. 实验力学, 2019, 34(05): 759-766.
CHEN Jianyun, LU Damin, MO Dekai,et al. Experimental study on the influence of symmetric tension-conpression cycles on the elastoplastic behavior of HRB400E steel[J]. Experimental Mechanics, 2019, 34(5): 759-766.
[15] 金属材料拉伸试验 第1部分: 室温试验方法: GB/T 228.1-2021[S]. 北京: 中国标准出版社, 2021.
Metallic Materials-Tensile Testing-Part 1: Method of test at room temperature: GB/T 228.1-2021 [S]. Beijing: China Quality and Standards Publishing Press, 2021.
[16] 建筑抗震试验方法规程: JGJ101-2015[S]. 北京: 中国建筑工业出版社, 2015.
Specification for seismic test of buildings: JGJ101-2015[S]. Beijing: China Architecture & Building Press, 2015.
[17]  施刚, 王飞, 戴国欣, 等. Q460D高强度结构钢材循环加载试验研究[J]. 土木工程学报, 2012, 45(07): 48-55.
SHI Gang, WANG Fei, DAI Guoxin, et al. Experimental study of high strength structural steel Q460D under cyclic loading[J]. China Civil Engineering Journal, 2012, 45(7): 48-55.
[18] 王佼姣, 石永久, 王元清, 等.低屈服点钢材LYP100循环加载试验[J]. 浙江大学学报(工学版), 2015, 49(08): 1401-1409.
WANG Jiaojiao, SHI Yongjiu, WANG Yuanqing, et al. Experimental study on low yield point steel LYP100 under cyclic loading[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(8): 1401-1409.
[19] 施刚, 王珣, 高阳, 等. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(08): 30-38.
SHI Gang, WANG Xun, GAO Yang, et al. Experimental study on domestic low yield point steels under cyclic loading[J]. Engineering Mechanics, 2018, 35(8): 30-38.
[20] RAMBERG W. Description of stress-Strain curves by three parameters[J]. National Advisory Committee for Aeronautics, Technical Note, 1943.
[21] ANSYS User’s Manual for Version 17.2[Z]. Canonsburg: ANSYS Inc, 2016.
[22] CHABOCHE J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2): 149-188.

PDF(5066 KB)

Accesses

Citation

Detail

段落导航
相关文章

/