为提高电涡流阻尼器输出的阻尼力,提出一种多层磁场旋转式电涡流惯容阻尼器(Multilayer Magnetic Field Rotary Eddy Current Inertial Damper, MMF-RECID),对其力学性能进行试验研究和有限元仿真。首先,介绍MMF-RECID的构造,建立MMF-RECID轴向力计算公式;然后,详细介绍了MMF-RECID试验样机,并考察在轴向反复荷载作用下MMF-RECID的惯容效应和耗能滞回性能,对MMF-RECID的轴向力组成进行分析,通过ANSOFT Maxwell软件对MMF-RECID的电涡流阻尼进行三维瞬态数值仿真,最后对一个设置MMF-RECID单自由度结构的减震效果进行分析。结果表明:(1)MMF-RECID的滚珠丝杠传动系统实现了惯性质量和电涡流阻尼力的双重增效,多层磁场输出的电涡流阻尼力符合磁场线性叠加的规律,滞回曲线稳定、饱满;(2)加载频率会改变MMF-RECID滞回曲线主轴方向的斜率以及轴向力的组成比例;(3)ANSOFT Maxwell三维瞬态仿真结果与试验结果具有一致性。(4)MMF-RECID具有良好的减震效果,且耗能密度高,具有工程应用可行性。
Abstract
To improve the output damping force of the eddy current damper, a multilayer magnetic field rotary eddy current inertial damper (MMF-RECID) is proposed. The mechanical properties of MMF-RECID were experimentally studied, and the finite element simulations were carried out. Firstly, the structure of the MMF-RECID is described, and the calculation formulas of the axial force of MMF-RECID is derived. Then, the MMF-RECID specimen is described in detail, the inertial effect and energy dissipation hysteresis performance of MMF-RECID under recycled axial loading are investigated, and the axial force composition of the MMF-RECID is analyzed. By the ANSOFT Maxwell software, the three-dimensional transient numerical simulations of eddy current damping of MMF-RECID are carried out. Finally, the earthquake-reduction effect of a single-degree-of-freedom structure equipped with MMF-RECID is analyzed. The results show that: (1) the ball screw system of MMF-RECID realizes the multiplicative effect of inertia mass and eddy current damping force, the eddy current damping force of multi-layer magnetic field versus a single-layer magnetic field conforms to the law of linear superposition, and the hysteresis curves are stable and full; (2) the loading frequency will change the main axis slope of the MMF-RECID hysteresis curve and the composition ratio of the axial forces; (3) the results of the ANSOFT Maxwell three-dimensional transient simulation are consistent with the experimental results; (4) MMF-RECID has a good damping performance with high energy density, and has promising engineering practicability.
关键词
电涡流阻尼 /
惯性质量 /
多层磁场 /
试验研究 /
瞬态仿真
{{custom_keyword}} /
Key words
eddy current damping /
inertial mass /
multilayer magnetic field /
experimental study /
transient simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wang Z H, Chen Z Q, Wang J H. Feasibility Study of a Large-scale Tuned Mass Damper with Eddy Current Damping Mechanism[J]. Earthquake Engineering and Engineering Vibration,2012,11(3):391-401.
[2] 何 仁,胡东海,张端军. 汽车电磁制动技术的研究与进展[J]. 汽车安全与节能学报,2013, 4(3):202-214.
HE Ren, HU Donghai, ZHANG Duanjun. Research and development of automobile electromagnetic brake technology for commercial vehicles [J]. Automotive Safety and Energy, 2013, 4(3): 202-214.
[3] Bae J S, Hwang J H, Roh J H, et al. Vibration suppression of a cantilever beam using magnetically tuned-mass-damper[J]. Journal of Sound and Vibration,2012,331(26):5669-5684.
[4] Lu Z, Huang B, Zhang Q, et al. Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations[J]. Journal of Sound & Vibration,2018,421(1):153-165.
[5] Zuo L, Chen X, Nayfeh S. Design and analysis of a new type of electromagnetic damper with increased energy density[J]. Journal of Vibration and Acoustics,2011,133(4):041006.
[6] 汪志昊,李国豪,田文文. 多层板式电涡流阻尼器构型与磁路优化分析[J]. 振动与冲击,2019, 38(19): 103-108.
Wang Zhihao, Li Guohao, Tian Wenwen. Configuration and magnetic circuit optimization of a multi- layer planar eddy current damper [J]. Journal of Vibration and Shock, 2019, 38(19): 103-108.
[7] Liu J , Loong C N , Wu W , et al. Design and analysis of plate-type eddy-current damper with high energy-dissipation capability[J]. Smart structures and systems, 2021,27(5):769-781.
[8] Smith M C, Wang F C. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle System Dynamics,2004,42(4):235-257.
[9] Shi X, Zhu S Y, Spencer B F. Experimental study on passive negative stiffness damper for cable vibration mitigation[J]. Journal of Engineering Mechanics,2017,143(9):04017070.
[10] Hwang J S, Kim J, Kim Y M . Rotational inertia dampers with toggle bracing for vibration control of a building structure[J]. Engineering Structures,2007,29(6):1201-1208.
[11] Ikago K, Sugimura Y, Saito K, et al. Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers[J]. Journal of Asian Architecture & Building Engineering, 2012,11(2):375-382.
[12] Sugimura Y, Goto W, Tanizawa H, et al. Response control effect of steel building structure using tuned viscous mass damper [C]. The 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
[13] Li J, Zhu S, Shen J. Enhance the damping density of eddy-current and electromagnetic dampers[J]. Smart Structures and Systems,2019,24(1):15-26.
[14] 尹光照,汪志昊,程志鹏等. 磁致负刚度电涡流惯质阻尼器力学性能试验与仿真[J]. 振动与冲击,2022,41(10): 309-316.
Yin Guangzhao, Wang Zhihao, Cheng Zhipeng, et al. Numerical simulation and experimental study on mechanical properties of a magnetic negative stiffness eddy-current inertia damper [J]. Journal of Vibration and Shock, 2022, 41(10): 309-316.
[15] 李亚峰,李寿英,王健钟. 齿轮齿条式电涡流阻尼器的力学性能研究[J]. 土木工程学报,2020,53(03): 44-50.
Li Yafeng, Li Shouying, Wang Jianzhong. Study on mechanical properties of eddy current damping-rack and gear damper [J]. China Civil Engineering Journal, 2020, 53(03): 44-50.
[16] Zhang H Y, Chen Z Q, Hua X G. Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control[J]. Mechanical Systems and Signal Processing, 2020,145(3):106879.
[17] 肖潇,黄智文,陈政清. 新型电涡流轴向阻尼器的阻尼特性及减振性能分析[J]. 土木工程学报,2021,54(12):64-73.
Xiao Xiao, Huang Zhiwen, Chen Zhengqing. Damping Characteristics and control performance of a novel axial eddy current damper [J]. China Civil Engineering Journal, 2021, 54(12): 64-73.
[18] Wouterse J H . Critical torque and speed of eddy current brake with widely separated soft iron poles[J]. IEE Proceedings. Part B, Electric Power Applications, 1991,138(4):153-158.
[19] 建筑抗震设计规范:GB 50011-2010[S]. 2016版. 北京:中国建筑工业出版社,2016.
Code for seismic design of building: GB 50011—2010 [S]. 2016 ed. Beijing: China Architecture & Building Press,2016.
[20] 丁洁民,吴宏磊,王世玉等. 减隔震技术的发展与应用[J].建筑结构,2021,51(17): 25-33.
Ding Jiemin, Wu Honglei, Wang Shiyu, et al. Development and application of seismic mitigation and isolation technology [J]. Building Structure, 2021, 51(17): 25-33.
[21] 杜东升,刘言杰,徐庆阳. 黏滞阻尼器考虑激励频率影响的附加阻尼比简化计算[J].振动工程学报,2021,34(01): 29-37.
Du Dongsheng, Liu Yanjie, Xu Qingyang. Simplified calculation of supplemental damping ratio of viscous damper considering excitation frequency [J]. Journal of Vibration Engineering, 2021, 34(01): 29-37.
[22] Palomera-Arias R, Connor J J, Ochsendorf J A. Feasibility Study of Passive Electromagnetic Damping Systems[J]. Journal of Structural Engineering, 2008, 134(1):164-170.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}