传统球体平衡器一般将平衡球约束于一个或多个平面圆环滚道中,事实上,球体具备沿转子轴线方向跨平面运动的能力,可用于转子质径矩的调节。提出了一种跨平面球体平衡器结构,对其振动抑制机理进行了研究。首先,应用拉格朗日方程建立了带有跨平面球体平衡器的转子系统振动模型;其次,分析了转子系统平衡解的组成,应用Floquet理论对系统周期解进行稳定性分析,得到了平衡球质量、转子支承刚度、支承阻尼和球体阻尼等参数对转子系统稳定性的影响,确定了不同参数条件下系统稳定区域分布;再次,通过数值计算分析验证了各稳定区内部系统的稳定性与平衡器的平衡能力;最后,进行了相关实验研究,验证了平衡器的有效性与仿真结果的正确性。结果表明,在高速阶段的稳定区中,平衡球可通过跨平面运动实现转子质径积与质径矩的双平衡。
Abstract
In a traditional ball balancer, the balls are usually confined in one or more plane annular runways. In fact, the balls have the ability to move across the plane and run along axial direction of the rotor, which can be used to adjust the mass-diameter moment of the system. A new cross-plane ball balancer is proposed is this paper and its capability for cross-plane vibration suppression is studied. Firstly, the vibration model of the rotor with a cross-plane ball balancer is established using Lagrange equation. Secondly, equilibrium solutions of the rotor are analyzed and stability characteristics of the steady state periodic solutions are studied using Floquet theory, influences of design parameters including the support stiffness and support damping of the rotor, and viscous damping of the balls on stability characteristics of the system are analyzed. Thirdly, stability characteristics of the rotor system and balancing capabilities of the balancer in each stable region are verified through numerical simulations. Finally, experiments are carried out to verify the effectiveness of the balancer and the correctness of the theoretical conclusions. The results show that the mass-diameter product and mass diameter moment of the rotor system can be balanced simultaneously through cross-plane motions of the balls in the complete balancing regions.
关键词
自动平衡 /
跨平面平衡器 /
稳定性分析 /
Floquet理论
{{custom_keyword}} /
Key words
Automatic balancing /
Cross-plane ball balancer /
Stability analysis /
Floquet theory
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张西宁,刘旭,张雯雯等.注排液型砂轮平衡装置控制策略与实验研究[J].振动与冲击,2019,38(15):223-230.
Zhang X N, Liu X, Zhang W W, et al. Control strategy and tests of balancing device for liquid injection and discharge type grinding wheel[J].Journal of Vibration and Shock,2019,38(15):223-230.
[2] 运侠伦,袁世珏,梅雪松等.高速电主轴注液式一体化平衡终端优化设计与实验研究[J].振动与冲击,2021,40(15):26-33.
Yun X L, Yuan S J, Mei X S, et al. Optimization design and tests for liquid injection type integrated balancing terminal of high-speed motorized spindle[J]. Journal of Vibration and Shock, 2021,40(15):26-33.
[3] 潘鑫,彭瑞轩,何啸天等.基于径向励磁和永磁-电磁联合驱动的主动平衡执行器[J].振动与冲击,2021,40(02):23-28.
Pan X, Peng R X, He X T, Wu H Q, et al. Electromagnetic active balancing actuator based on the radial excitation and permanent magnet-electromagnetism combined driving method[J]. Journal of Vibration and Shock, 2021, 40(02):23-28.
[4] 郭文军, 张小龙, 张凯等. 双盘球式自动平衡装置动态特性分析[J]. 科学技术与工程,2020,020(011):4323-4329.
Guo W J, Zhang X L, Zhang K, et al. Dynamic characteristic analysis of double disc ball automatic balancing device[J]. Science Technology and Engineering, 2020, 020(011):4323 -4329.
[5] 王志. 大长径比柔性转子球体动平衡抑振方法研究[D]. 无锡:江南大学,2020.
Wang Z. Study on vibration suppression of large aspect ratio flexible rotors using ball balancer[D].Wuxi: Jiangnan University, 2020
[6] Ehyaei J, Moghaddam M M. Dynamic response and stability analysis of an unbalanced flexible rotating shaft equipped with n automatic ball-balancers[J]. Journal of Sound and Vibration, 2009, 321(3-5):554-571.
[7] Desmidt H A. Imbalance vibration suppression of a supercritical shaft via an automatic balancing Device[J]. Journal of Vibration and Acoustics,2009,131(4): 041001.
[8] Desmidt H A. Automatic balancing of bladed-disk/shaft system via passive autobalancer devices[J]. American Institute of Aeronautics and Astronautics Inc, 2010, 48(2):372-386.
[9] Rodrigues D J, Champneys A R, Friswell M I, et al. Two-plane automatic balancing: a symmetry breaking analysis[J]. International Journal of Non-Linear Mechanics, 2011, 46(9): 1139-1154.
[10] Tadeusz M, Dariusz S, Marco A M M. Self-balancing system of the disk on an elastic shaft [J]. Journal of Sound and Vibration, 2015, 359(2):2-20.
[11] Haidar A M, Palacios J L. A general model for passive balancing of supercritical shafts with experimental validation of friction and collision effects[J]. Journal of Sound and Vibration, 2016, 384:273-293.
[12] Chen H W,Chen Y B, Sun Z,et al. Automatic balancing of a flexible supported rotor with two disks by two ball balancers[J]. Journal of Mechanical Science and Technology, 2021, 35(7): 2781-2792.
[13] Friswell M I, Penny J, Garvey S D, et al. Dynamics of rotating machines[M]. Cambridge university press, 2010, p341.
[14] Kim W, Chung J. Performance of automatic ball balancers on optical disc drives[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2002, 216(11):1071-1080.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}