包装件在非高斯随机载荷下响应特征分析方法研究

朱大鹏1,王浩然1,曹兴潇2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 100-107.

PDF(1115 KB)
PDF(1115 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 100-107.
论文

包装件在非高斯随机载荷下响应特征分析方法研究

  • 朱大鹏1,王浩然1,曹兴潇2
作者信息 +

Package response characteristics analysis under non-Gaussian loads

  • ZHU Dapeng1,WANG Haoran1,CAO Xingxiao2
Author information +
文章历史 +

摘要

在运输过程中,包装件经常受到非高斯随机振动的作用,在进行包装系统优化时,经常需要重复确定包装件加速度响应的统计特征和振动可靠性,本文提出一种高效准确确定非高斯随机振动条件下非线性包装件加速度响应统计特征的分析方法。采用非高斯Karhunen-Loeve展开将非高斯随机振动表示为非高斯随机变量的线性组合,用一阶泰勒展开估计包装件加速度响应,确定加速度响应的统计矩参数,根据包装件加速度响应的前四阶矩参数,应用鞍点估计法确定包装件加速度响应的概率密度函数(probability density function ,PDF)和累积分布函数(cumulative distribution function ,CDF)。由于采用随机变量的线性组合模拟非高斯随机振动激励,避免了随机变量非线性变换,采用一阶泰勒展开估计包装件加速度响应具有良好的准确性,鞍点估计法分析包装件加速度响应的PDF和CDF,避免了大量蒙特卡洛或拟蒙特卡洛分析,提高了分析效率。

Abstract

In many cases, the package is excited by non-Gaussian random vibration loads, in circumstances where the packaging system optimization and package parameters optimization are performed, the package acceleration response statistical characteristics and vibration reliability needs to be determined repeatedly. Therefore, in this paper, an efficient and accurate analytical method is proposed to determine statistical characteristics of nonlinear package acceleration response. By use of non-Gaussian Karhunen-Loeve expansion, the stationary non-Gaussian random vibration is expressed as the linear combination of uncorrelated non-Gaussian random variables, the package acceleration response is approximated by first order Taylor expansion, the statistical characteristics of package acceleration response are determined analytically. The probability density function(PDF) and cumulative distribution function(CDF) of package acceleration response are determined using the saddlepoint approximation method, based on the first four statistical moments of package acceleration response. Since the linear combination of non-Gaussian variables is used to express the excitation, the nonlinear transformation of random variables is avoided, the first order Taylor expansion approximation for the response has good accuracy. The PDF and CDF of package response are determined analytically by use of saddlepoint approximation, the Monte Carlo(or Quasi Monte Carlo) simulations are avoided, the analysis efficiency is improved greatly.

关键词

非高斯随机振动 / 包装件响应特征 / 非高斯Karhunen-Loeve展开 / 鞍点估计法

Key words

non-Gaussian random vibration / package response characteristics / non-Gaussian Karhunen-Loeve expansion / saddlepoint approximation method

引用本文

导出引用
朱大鹏1,王浩然1,曹兴潇2. 包装件在非高斯随机载荷下响应特征分析方法研究[J]. 振动与冲击, 2023, 42(2): 100-107
ZHU Dapeng1,WANG Haoran1,CAO Xingxiao2. Package response characteristics analysis under non-Gaussian loads[J]. Journal of Vibration and Shock, 2023, 42(2): 100-107

参考文献

[1] Lepine J, Rouillard V, Sek M. Review paper on road vehicle vibration simulation for packaging testing purposes[J]. Packaging Technology and Science, 2015, 28(8):672-682.
[2] 曾昕, 蒋瑜, 范政伟,等. 包装运输试验中非平稳随机振动表征和模拟方法[J]. 包装工程,2021, 42(9):1-10.
ZENG Xin, JIANG Yu, FAN Zheng-wei, et al. Characterization and simulation method of non-stationary random vibration in packaging and transportation test[J]. Packaing Engineering, 2021, 42(9):1-10.
[3] Lamb M J, Rouillard V. On the parameters that influence road vehicles vibration levels. Packaging Technology and Science. 2021,34(9):525–540.
[4] Hosoyama A, Tsuda K, Horiguchi S. Development and validation of kurtosis response spectrum analysis for antivibration packaging design taking into consideration kurtosis[J]. Packaging Technology and Science, 2020, 33(2):51-64.
[5] Wang Z W, Wang L J. Accelerated random vibration testing of transport packaging system based on acceleration PSD[J]. Packaging Technology and Science, 2017,30(10):621-643.
[6] 王志伟, 房树盖. 不同谱型激励下包装件动态响应研究[J]. 振动与冲击, 2019,38(24):218-226,256.
WANG Zhi-wei, FANG Shu-gai. A study on dynamic responses properties of packaged products under different spectral excitation[J]. Journal of Vibration and Shock, 2019,38(24):218-226,256.
[7] 王志伟, 刘远珍. 随机振动下包装件加速度响应的非高斯特征[J]. 振动与冲击, 2018, 37(17):41-47.
WANG Zhi-wei, LIU Yuan-zhen. Non-Gaussian features of packages’acceleration responses under random vibrations[J]. Journal of Vibration and Shock, 2018, 37(17):41-47.
[8] 于水源, 曾台英, 丁逸秋. 基于运输环境的包装系统疲劳损伤分析[J]. 包装工程, 2020,41(13):118-123.
YU Shui-yuan, ZENG Tai-ying, DING Yi-qiu. Fatigue Damage of Packaging System Based on the Transportation Environment[J]. Packaing Engineering, 2020,41(13):118-123.
[9] 朱大鹏. 非高斯随机振动下包装件时变振动可靠性分析[J]. 振动与冲击, 2020,39(16):96-102,134.
ZHU Da-peng. Time-dependent reliability analysis of package under non-Gaussian excitation[J]. Journal of Vibration and Shock, 2020,39(16):96-102,134.
[10] 朱大鹏,薛如壮,曹兴潇. 基于单自由度参数激励模型的车辆随机振动分析[J]. 振动与冲击, 2022, 41(2): 79-86..
ZHU Da-peng, XUE Ru-zhuang, CAO Xing-xiao. Vehicle random vibration analysis using SDOF parametric excitation model[J]. Journal of Vibration and Shock, 2022, 41(2): 79-86.
[11] 蒋瑜, 陶俊勇, 王得志,等. 一种新的非高斯随机振动数值模拟方法[J]. 振动与冲击, 2012, 31(19):169-173.
JIANG Yu, TAO Jun-yong, WANG De-zhi, et al. A novel approach for numerical simulation of a non-Gaussian random vibration[J]. Journal of Vibration and Shock, 2012, 31(19):169-173.
[12] 蒋瑜, 陈循, 陶俊勇等. 指定功率谱密度、偏斜度和峭度值下的非高斯随机过程数字模拟[J]. 系统仿真学报, 2006, 18(5):1127-1130.
JIANG Yu, CHEN Xu, TAO Jun-Yong. Numerically simulating non-Gaussian random processes with specified PSD,skewness and kurtosis[J]. Journal of System Simulation, 2006, 18(5):1127-1130.
[13] Grigoriu M. A class of weakly stationary non-Gaussian models. Probabilistic Engineering Mechanics. 2008, 23(4):378-384.
[14] Grigoriu M. Parametric translation models for stationary non-Gaussian processes and fields. Journal of Sound and Vibration. 2007, 303(3-5):428-439.
[15] 杨喆, 朱大鹏, 高全福. 一种非高斯随机振动过程数值模拟方法[J]. 包装工程,2019,40(15):48-53.
YANG Zhe, ZHU Da-peng, GAO Quan-fu. A numerical simulation method for non-Gaussian random vibration process[J]. Packaging Engineering, 2019, 40(15):48-53.
[16] Vasiliki T, Vasileios G, Zissimos M, et al. A methodology for fatigue life estimation of linear vibratory systems under non-Gaussian loads[J]. Sae International Journal of Commercial Vehicles, 2017, 10(2):2017-01-0197.
[17] Dick J, Kuo F Y and Sloan I H. High-dimensional integration: the quasi-Monte Carlo way[J]. Acta Numerica, 2013,22:133-288.
[18] Phoon K K, Huang S P and Quek S T. Simulation of second-order processes using Karhunen-Loeve expansion[J]. Computers & Structures, 2002, 80(12):1049-1060.
[19]  Phoon K K, Huang H W and Quek S T. Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion[J]. Probabilistic engineering mechanics, 2005, 20(2):188-198.
[20] Huang S P, Quek S T and Phoon K K. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes[J]. International Journal for Numerical Methods in Engineering, 2001, 52(9):1029-1043.
[21] 朱大鹏. 非线性包装件加速度响应首次穿越问题分析[J]. 振动与冲击, 2018, 37(24):183-188.
ZHU Da-peng. Acceleration response first passage failure probability analysis for a nonlinear package[J]. Journal of Vibration and Shock, 2018, 37(24):183-188.
[22] Ghanem R G and Spanos P D. Stochastic finite elements : a spectral approach[M]. Dover, NY, 1991.
[23] Nikolaidis E, Mourelatos Z P, Pandey V. Design decisions under uncertainty with limited information[M]. CRC Press, Taylor&Francis Group, Lonton, UK, 2011.
[24] Florian A. An efficient sampling scheme: updated latin hypercube sampling[J]. Probabilistic Engineering Mechanics, 1992,12(2):123-130.
[25] Iman R L, Conover W J. A distribution-free approach to inducing rank correlation among input variables[J]. Communications in Statistics, 1982,11(3):311-334.
[26] Huang Beiqing, Du Xiaoping. Probabilistic uncertainty analysis by mean-value first order saddlepoint approximation[J]. Reliability Engineering & System Safety, 2008,93(2):325-336.
[27] Hu Zhen, Du Xiaoping. Saddlepoint approximation reliability method method for quadratic functions in normal variables[J]. Structural Safety, 2018,71:24-32.
[28] Lu Hao, Cao Shuang, Zhu Zhencai, et al. An improved high order moment-based saddlepoint approximation method for reliability analysis[J]. Applied Mathematical Modelling, 2020,82:836-847.
[29] Zhu Lisha, Lu Hao, Zhang Yimin. A system reliability estimation method by the fourth moment saddle point approximation and copula functions[J]. Quality and Reliability Engineering International, 2021:1-20.
[30] Guo Shuxiang. An efficient third-moment saddlepoint approximation for probabilistic uncertainty analysis and reliability evaluation of structures[J]. Applied Mathematical Modelling, 2014,38:221-232.
[31] Jin X, Lee S, Chen W et al. Efficient random field uncertainty propagation in design using multiscale analysis[J]. Journal of Mechanical Design, 2009,131(2):021006-021015.
[32] 朱大鹏,周世生. 瓦楞纸板在冲击激励下的动态特性建模与响应分析[J]. 机械科学与技术,2013,32(2):257-262.
ZHU Da-peng, ZHOU Shi-sheng. Dynamic modeling and response analysis of corrugated paperboard to shock excitation[J]. Mechanical Science and Technology for Aerospace Engineering, 2013(2):257-262.

PDF(1115 KB)

Accesses

Citation

Detail

段落导航
相关文章

/