Hopkinson杆式冲击疲劳实验方法研究

李泊立,赵思晗,刘圆梦,杨建辉,郭伟国

振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 132-138.

PDF(1626 KB)
PDF(1626 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 132-138.
论文

Hopkinson杆式冲击疲劳实验方法研究

  • 李泊立,赵思晗,刘圆梦,杨建辉,郭伟国
作者信息 +

Method for experiment study on impact fatigue based on Hopkinson bar

  • LI Boli,ZHAO Sihan,LIU Yuanmeng,YANG Jianhui,GUO Weiguo
Author information +
文章历史 +

摘要

在民用与国防领域,装备或结构部件常常受到高加载率的重复冲击,即冲击疲劳问题。冲击疲劳试验装置是研究冲击疲劳问题的基础,文章提出一种分离式Hopkinson杆式冲击疲劳实验方法,首先通过真空系统使撞击弹复位,在加载过程中通过弹性约束对入射杆进行限位,最后利用电动推杆使透射杆和试样复位,以上过程通过PLC控制器控制。这种方法操作简易,能通过在杆上的信号采集实现冲击波的连续实时显示,并能改变撞击体几何构形以产生不同形状(梯形波、三角波或半正弦波)和不同加载率(8×105~3×106MPa/s)的冲击加载波,加载频率范围在0~0.5Hz。最后利用高强钢圆柱试样和含有工艺缺陷的增材制造316L不锈钢三点弯曲试样对试验方法进行了验证,证明此方法有效可靠。

Abstract

In both civilian and military fields, equipment or structural components are often subjected to repeated impacts with high loading rates, namely impact fatigue problems. The impact fatigue test device is the basis for studying the impact fatigue problems, therefore an impact fatigue test method based on the split Hopkinson bar is presented in this article, where the impact projectile is reset by vacuum system, the incident bar is limited by elastic restraint during the loading process, and the transmission bar and the specimen are reset by an electric push bar. The above process is controlled by the PLC controller. The continuous real-time display of waves through signal acquisition on the bar can be realized by this method which is easy to operate and can change the geometric configuration of the impact projectile to produce loading wave with different wave configurations (trapezoidal wave, triangle wave and half sine wave) and different loading rates (8×105~3×106MPa/s). Meanwhile, the loading frequency ranges from 0 to 0.5Hz. Finally, the applicability of the method is demonstrated in this paper with test results for high-strength steel cylindrical specimens and three-point-bending specimen processed by additive manufactured 316L stainless steel with process defects.

关键词

冲击疲劳 / 重复加载 / Hopkinson杆 / 三点弯曲试样

Key words

impact fatigue / repeated loading / Hopkinson bar / three-point-bending specimen

引用本文

导出引用
李泊立,赵思晗,刘圆梦,杨建辉,郭伟国. Hopkinson杆式冲击疲劳实验方法研究[J]. 振动与冲击, 2023, 42(2): 132-138
LI Boli,ZHAO Sihan,LIU Yuanmeng,YANG Jianhui,GUO Weiguo. Method for experiment study on impact fatigue based on Hopkinson bar[J]. Journal of Vibration and Shock, 2023, 42(2): 132-138

参考文献

[1] 杨国安,张  冬,黄  聪. 钻井泵阀的冲击特性分析[J]. 振动与冲击,2008,27(12):18-22+176.
YANG Guo-an, ZHANG Dong, HUANG Cong. Impact characteristic analysis of drilling pump valve[J]. Journal of Vibration and Shock, 2008, 27(12): 18-22+176.
[2] King W E, Barth H D, Castillo V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(12): 2915-2925.
[3] 于  杰,金志浩,涂铭旌,等. 关于多冲试验方法的评价[J]. 贵州工学院学报,1990(04):99-106.
YU Jie, JIN Zhi-hao, TU Ming-jin, et al. Comments on repeated impact tests[J]. Guizhou Institute of Technology, 1990(04): 99-106.
[4] 冉  刚,张建国,王  泓,等. 拉伸超载对超高强度钢A-100冲击疲劳性能的影响[J]. 热加工工艺,2012,41(14):94-96.
RAN Gang, ZHANG Jian-guo, WANG Hong, et al. Effect of tensile overloading on impact fatigue properties of ultra-high strength steel A-100[J]. Material & Heat Treatment, 2012, 41(14): 94-96.
[5] Stanton T E, Bairstow L. The resistance of materials to impact[J]. Proceedings of the Institution of Mechanical Engineers, 1908, 75(1): 889-919.
[6] 周惠久,黄明志. 在多次重复冲击载荷下钢的断裂抗力的研究[J]. 西安交通大学学报,1962,10(1):1-20.
ZHOU Hui-jiu, HUANG Ming-zhi. Study on fracture resistance of steel under repeated impact load[J]. Journal of Mechanical Engineering, 1962, 10(1):1-20.
[7] Tanaka T, Nakayama H, Kimura K. On the impact fatigue crack growth behaviour of metallic materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 1985, 8: 13-22.
[8] 程巨强,刘志学,王元辉. 新型贝氏体钢的组织和冲击疲劳性能研究[J]. 材料工程,2006,(12):8-10+15.
CHENG Ju-qiang, LIU Zhi-xue, WANG Yuan-hui. Study on microstructure and impact fatigue properties of new type bainitic steel[J]. Journal of Materials Engineering, 2006, (12): 8-10+15.
[9] 陈  鼎,姚  亮,陈振华,等. WC-Co类硬质合金的低周冲击疲劳性能研究[J]. 稀有金属与硬质合金,2017,45(03):71-75+80.
CHEN Ding, YAO Liang, CHEN Zhen-hua, et al. Study on low cycle impact fatigue performance of WC-Co cemented carbides[J]. Rare Metals and Cemented Carbides, 2017, 45(03): 71-75+80.
[10] Pan Y, Wu C, Cheng X F, et al. Impact fatigue behaviour of GFRP mesh reinforced engineered cementitious composites for runway pavement[J]. Construction and Building Materials, 2020, 230.
[11] Carvajal D R A, Correa R A M, Casas-Rodríguez J P. Durability study of adhesive joints used in high-speed crafts manufactured with composite materials subjected to impact fatigue[J]. Engineering Fracture Mechanics, 2020, 225.
[12] Wilson J F. Impact-induced fatigue of foamed polymers[J]. International Journal of Impact Engineering, 2007, 34(8): 1370-1381.
[13] Azouaoui K, Ouali N, et al. Damage characterisation of glass/polyester composite plates subjected to low-energy impact fatigue[J]. Journal of Sound and Vibration, 2007, 308: 504-513.
[14] 田庆敏,徐  诚,周苏吉. 卧式冲击疲劳试验机的设计与性能分析[J]. 机械设计与制造,2012,(7):236-238.
TIAN Qing-min, XU Cheng, ZHOU Su-ji. Design and performance analysis of horizontal impact fatigue testing machine[J]. Machinery Design & Manufacture, 2012, (7): 236-238.
[15] 郭伟国,鬲钰焯,苏  静. 用于分离式Hopkinson杆装置的一种先进气动发射机构[J]. 机械科学与技术,  2010,29(12):1739-1743+1748.
GUO Wei-guo, GE Yu-zhuo, SU Jing. An advanced pneumatic firing mechanism for the split Hopkinson bar equipment[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(12): 1739-1743+1748.
[16] Yuan K, Guo W, Su Y, et al. Study on several key problems in shock calibration of high-g accelerometers using Hopkinson bar[J]. Sensors and Actuators A: Physical, 2017, 258: 1-13.
[17] 王瑞丰,郭伟国,赵思晗,等. 一种基于Hopkinson拉杆实现拉/压冲击疲劳试验的装置和方法[P]. CN113049420A,2021-06-29.

PDF(1626 KB)

556

Accesses

0

Citation

Detail

段落导航
相关文章

/