逆变器是强的非线性系统,它通常具有复杂动力学现象,例如跨临界分岔,倍周期分岔等,它会大大增加输出电流的谐波含量,降低变换器的效率,使其发生振荡乃至崩溃。目前大多数混沌控制存在建模困难,控制效果不明显,稳定性不强的缺点。针对此,提供了一种全新的混沌抑制方式,即改进余弦延时反馈控制(improved cosine delay feedback control ,ICDFC)。该方式先使用被控对象的输出量和自身延时一个周期的差值作为反馈量,该反馈量再经过余弦函数环节和反馈控制参数之后得到控制信号,并将该控制信息以反馈形式直接作用到被控对象中。同时构建系统频闪映射模型并寻求系统的Jacobian矩阵和平衡点,最后基于朱里判据给出了反馈控制参数的限定条件。为说明所提出混沌控制方法的优越性,开展了大量的仿真模拟实验,并与指数延时反馈控制进行比较,结果表明,ICDFC能更有效的抑制逆变器的混沌行为,且大大增加了系统运行的稳定域。
Abstract
Inverter is a strong nonlinear system, it generally has sophisticated nonlinear dynamical behaviors, for instance transcritical bifurcation, period doubling bifurcation, etc, it will greatly increased the harmonic component of the output current, decrease the efficiency rate of the convertor, make it oscillate and even collapse. At present, most of chaos control has the disadvantages of modeling difficulty, control effect is not obvious and stability is not strong. To solve this problem, a new chaos suppression method, namely improved cosine delay feedback control (ICDFC), is proposed. In this method, the difference value between the export variable of the controlled object and itself time delay of one period is first used as the feedback quantity, which then passes through the cosine function and feedback control parameters to obtain the controlling message, after that the controlling message is directly reaction on the controlled subject in feedback forms. In the meantime, establishing system’s stroboscopic mapping model, seeking the Jacobin matrices and balance points of the controlled object. At last, the restrictive conditions of the feedback controlling parameter is presented based on the July criterion. To illustrate the superiority of the suggested chaotic control method, a great deal of simulating experiments were unfolded, and compared with exponential delayed feedback control which proves that ICDFC can not only suppress the chaotic behavior of the inverter more effectively, but also largely increases system operational stable region.
关键词
单相H桥光伏逆变器 /
非线性动力学行为 /
混沌控制 /
改进余弦延时反馈控制
{{custom_keyword}} /
Key words
Single-phase H-bridge pv inverter /
nonlinear dynamics behavior /
chaotic control /
improvement cosinoidal delayed feedback control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 管炳文. 电力电子技术应用系统发展热点综述[J]. 电子技术与软件工程,2014, (16):151.
GUAN Bing-wen. Review on The Development of Power Electronic Technology Application System [J]. Electronic Technology and Software Engineering, 2014, (16):151.
[2] 关金萍,徐永海. 电力电子变压器在风力发电系统中的应用研究综述[J]. 电工电能新技术,2019,38(02):88-96.
GUAN Jin-ping, XU Yong-hai. Research review of power electronic transformer applicationsin wind energy conversion systems [J]. Advanced Technology of Electrical Engineering and Energy, 2019,38(02):88-96.
[3] 马西奎,李明,等. 电力电子电路与系统中的复杂行为研究综述[J]. 电工技术学报,2006,21(12):001-011.
MA Xi-kui, LI Ming, et al. Reviews of Research on Complex Behavior of Power Electronic Circuits and Systems [J]. Transactions of China Electrotechnical Society, 2006,21(12):001-011.
[4] 代 璐,龙崦平. PI 调节下光伏逆变器的分岔与混沌现象研究[J]. 电力系统保护与控制,2012,40(24):89-94.
DAI Lu, LONG Yan-ping. Study of bifurcation and chaos for photovoltaic inverter with PI controller [J]. Power System Protection and Control, 2012,40(24):89-94.
[5] 徐路,冯平,陈镜伯,等. SPWM-H 桥逆变器的2种离散模型及复杂行为研究[J].后勤工程学院学报,2015,31(6):87-91.
XU Lu, FENG Ping, CHEN Jing-bo, et al. Research on Two Discrete Models and Complex Behaviors in SPWM⁃H Bridge Inverter [J]. Journal of Logistical Engineering University, 2015,31(6):87-91.
[6] 廖志贤,罗晓曙,黄国现. 两级式光伏并网逆变器建模与非线性动力学行为研究[J]. 物理学报,2015,64(13) :130503.
LIAO Zhi-xian, LUO Xiao-shu, HUANG Guo-xian. Numerical modeling and research on nonlinear dynamic behaviors of two-stage photovoltaic grid-connected inverter [J]. Acta Physica Sinica, 2015,64(13) :130503.
[7] 施烨,吴在军,窦晓波,等. 三相全桥逆变器分岔特性研究[J]. 中国电机工程学报,2016,36(19):5334-5350.
SHI Ye, WU Zai-jun, DOU Xiao-bo, et al. Research on Bifurcation Behaviors of Three-phase Full Bridge Inverters [J]. Proceedings of the CSEE, 2016,36(19):5334-5350.
[8] 代云中,何凯瑞,杜程茂,等. LC 滤波 H6 结构逆变器离散模型简化与动力学行为[J]. 高电压技术,2017,43(10):3313-3321.
DAI Yun-zhong, HE Kai-rui, DU Cheng-mao, et al. Discrete Model Simplification and Dynamic Behavior of LC-filter-based Inverter with H6-type [J]. High Voltage Engineering,2017,43(10):3313-3321.
[9] 代云中,任海军,林春旭,等. 滑模变结构控制 H6 结构逆变器的非线性行为和稳定域[J]. 高电压技术,2017,43(4):1152-1159.
DAI Yun-zhong, REN Hai-jun, LIN Chun-xu, et al. Non-linear Behavior and Stability Domain in Sliding Mode Controlled Inverter with H6-type [J]. High Voltage Engineering, 2017,43(4):1152-1159.
[10] 代云中,赵鹏程,任海军,等. H6 结构不隔离光伏并网逆变器边界碰撞分岔与稳定域[J]. 太阳能学报,2019,49(1):126-133.
DAI Yun-zhong, ZHAO Peng-cheng, REN Hai-jun, et al. Border-collision Bifurcation and Stability Domain of Non-isolated Photovoltaic Grid-connected With H6-Type [J]. Acta Energiae Solaris Sinica,2019,49(1):126-133.
[11] 江 伟,吴荣华. 基于 PI 控制的 H 桥逆变器工作稳定性研究[J]. 振动与冲击,2020,39(16):62-68.
JIANG Wei,WU Rong-hua. A study on working stability of H-bridge inverter based on PI control [J]. Journal of vibration and shock, 2020,39(16):62-68.
[12] Iu H H C, Robert B. Control of chaos in a PWM current-mode H-bridge inverter using time-delayed feedback [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and, Applications, 2003, 50(8): 1125-1129.
[13] Robert B, Iu H H C, Feki M. Adaptive time-delayed feedback for chaos control in a PWM single phase inverter [J]. Journal of Circuits, Systems and Computers, 2004, 13(3):519-534.
[14] Jiang W, Zhou Y F, Chen J N, et al. Research of modeling and simulation to control chaos in H bridge converter [C]. The Ninth International Conference on Electronic Measurement and Instruments. IEEE, 2009:327-331
[15] Robert B, Feki M. Control of a PWM Inverter Using Proportional Plus Extended Time-Delayed Feedback [J]. International Journal of Bifurcation and Chaos, 2006,16(1):113–128.
[16] 周林,龙崦平,谢江宁. H 桥变换器的 Washout 滤波器混沌控制方法 [J]. 电力系统保护与控制,2013,41(06):32-37.
ZHOU LIN, LONG Yan-ping, XIE Jiang-ning. Controlling chaos in H-bridge converter with Washout filter [J]. Power System Protection and Control,2013,41(06):32-37.
[17] 龙崦平. 单相全桥逆变器分岔与混沌现象研究 [D]. 重庆市:重庆大学,2013.
Long Yan-ping. Research of Bifurcation and Chaos in Single-Phase Full-Bridge Inverter [D]. Chongqing City: Chongqing University, 2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}