采用实验的方法,对不同结构式液阻衬套在不同振幅及不同频率下的静、动特性及内特性进行了测试。推导得到一个统一的可表征多惯性通道-多节流孔式液阻衬套的集总参数模型,对液阻衬套的动特性进行了描述。建立了统一的多惯性通道-多节流孔式液阻衬套液体通道内流量响应及液室内压力波动的响应方程。采用直接流固耦合及不变特征点相结合的方法得到液阻衬套实物模型的计算参数,计算与测试结果对比验证了模型的正确性。对不同结构式液阻衬套在不同振幅及频率激振下的内特性进行了计算研究,并与理论推导结论及测试结果进行了对比分析,验证了计算分析的正确性。文中的计算方法可为液阻衬套的初期选型及设计开发提供直接参考。
Abstract
Using experimental methods, the static and dynamic characteristics and internal characteristics of different structural hydraulic bushings under different amplitudes and different frequencies were tested. A unified multi-inertial tracks-multi-orifices hydraulic bushing lumped parameter model is derived, and the dynamic characteristics of the hydraulic bushing are described. A unified multi-inertial tracks-multi-orifices hydraulic bushing fluid flow response in the fluid channel and the response equation of pressure fluctuations in the fluid chamber are established. The calculation parameters of the physical model of the hydraulic bushing are obtained by the combination of direct fluid-solid coupling and fixed points. The calculation results are compared with the test to verify the correctness of the model. The calculation analyzes the internal characteristics of different structural hydraulic bushings under different amplitude and frequency excitation, and compares the theoretical derivation and experimental data to verify the correctness of the calculation and analysis results. The calculation method in the article can provide a direct reference for the initial selection, design and development of hydraulic bushings.
关键词
液阻衬套 /
集总参数模型 /
内特性 /
统一模型
{{custom_keyword}} /
Key words
hydraulically damped bushings;lumped parameter model;internal characteristics /
unified model;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 卢炽华, 李永超, 刘志恩,等. 轮心激励下车辆结构路噪传递路径分析[J]. 振动与冲击, 2021, 40(18):42-49.
Chi-hua L, Yong-chao L, Zhi-en.L Vehicle structural road noise transmission path under wheel excitation [J]. Journal of Vibration and Shock, 2021, 40(18):42-49.
[2] Heißing, Bernd; Ersoy, Metin. Chassis Handbook[M].Springer,2011.
[3] Chai T , Dreyer J T , Singh R . Time domain responses of hydraulic bushing with two flow passages[J]. Journal of Sound & Vibration, 2014, 333(3):693-710.
[4] Chai T, Dreyer J.T, Singh R. Frequency domain properties of hydraulic bushing with long and short passages: system identification using theory and experiment[J]. Mechanical Systems and Signal Processing, 2015, 56: 92-108.
[5] Chai T, Dreyer J.T, Singh R. Nonlinear dynamic properties of hydraulic suspension bushing with emphasis on the flow passage characteristics[J].Part D: Journal of Automobile Engineering, 2014,1-18.
[6] Singh R , Kim G , Ravindra P V . Linear analysis of automotive hydro-mechanical mount with emphasis on decoupler characteristics[J]. Journal of Sound & Vibration, 1992, 158(2):219-243.
[7] Geisberger A.Khajepour A.Golnaraghi F.Non-linear modelling of hydraulic mounts: theory and experiment. [J]. Journal of Sound & Vibration, 2002, 249(2):371-397.
[8] Shangguan W B , Lu Z H . Experimental study and simulation of a hydraulic engine mount with fully coupled fluid–structure interaction finite element analysis model[J]. Computers & Structures, 2004, 82(22):1751-1771.
[9] Fredette L ,Rath S,Singh R .Nonlinear fluid damping models for hydraulic bushing under sinusoidal or transient excitation[J].Part D: Journal of Automobile Engineering, , 2010, 233(3):1-10.
[10] Fredette L , Singh R . Effect of fractionally damped compliance elements on amplitude sensitive dynamic stiffness predictions of a hydraulic bushing[J]. Mechanical Systems and Signal Processing, 2018, 112:129-146.
[11] MIYAMOTO Y, NAKAMURA S.Study of Hydro Bush for Reduction of Harshness and Road Noise [J]. Review of Automotive Engineering ,2005,(26),33-40.
[12] 杨超峰, 殷智宏, 上官文斌, 等. 液阻衬套与液阻悬置作用机理的对比分析[J]. 华南理工大学学报 (自然科学版), 2015, 43(8): 82-90.
Chao-feng Y, Zhi-Hong Y.Comparison of the working mechanisms of the hydraulic damped bushings and hydraulic engine mounts [J]. Journal of South China University of Technology( Natural Science Edition), 2015, 43(8): 82-90.
[13] 刘松, 吴先梅, 彭修乾,等. 基于双向流固耦合的输流圆管应力应变响应分析[J].振动与冲击, 2021, 40(20):73-79.
Song L, Xian-mei W, Xiu-qian P.Analysis of stress-strain responses of a liquid-filled pipe based on
two-way fluid-structure interaction[J]. Journal of Vibration and Shock, 2021, 40(20):73-79.
[14] 杨超峰, 殷智宏, 上官文斌, 等. 汽车悬架液阻衬套非线性动特性的实验与建模方法研究[J]. 振动与冲击, 2016, 35(3):79-86.
Chao-feng Y, Zhi-Hong Y, Wen-bin ShG.. Experiment and modeling of the nonlinear dynamic characteristics of a hydraulic bushing used in a vehicle suspension [J]. Journal of Vibration and Shock, 2016, 35(3):79-86.
[15] Fan R , Lu Z . Fixed points on the nonlinear dynamic properties of hydraulic engine mounts and parameter identification method: Experiment and theory[J]. Journal of Sound & Vibration, 2007, 305(4-5):703-727.
[16] 杨超峰. 液阻型橡胶衬套动力学特性的实验与计算方法研究[D]. 华南理工大学, 2016.
Chao-feng Y.A study on Experiment and Calculation of the Dynamic Performance of Dydraulically Damped rubber Bushings[D]. South China University of Technology, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}