基于格子Boltzmann方法的起落架阻尼油孔参数研究

甘盛勇1,2,3,魏小辉 1,2,3,房兴波1,2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 182-188.

PDF(2089 KB)
PDF(2089 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 182-188.
论文

基于格子Boltzmann方法的起落架阻尼油孔参数研究

  • 甘盛勇1,2,3,魏小辉 1,2,3,房兴波1,2,3
作者信息 +

Analysis on the damping oil hole parameters of a landing gear based on lattice Boltzmann method

  • GAN Shengyong1,2,3,WEI Xiaohui1,2,3,FANG Xingbo1,2,3
Author information +
文章历史 +

摘要

为了分析起落架缓冲器油孔阻尼特性,采用格子Boltzmann方法分析油孔几何参数和工作环境参数对油液流动特性的影响,基于单参数分析结果和最小二乘法,建立并验证了阻尼力回归方程。结果表明:格子Boltzmann方法可以准确分析油孔阻尼性能。油孔长度会改变流动最小收缩截面在油孔中的位置,油孔直径在有限区间内的变化对缩流系数影响很小,后端压力增大会改善油孔流动质量。回归方程在设计区间内可以可靠的预测阻尼力大小,该方法可以被用于一般性的起落架缓冲器油孔设计中。

Abstract

In order to analyze the damping characteristics of the landing gear oil hole, the lattice Boltzmann method was used to analyze the influence of oil hole geometric parameters and operating environment parameters on the oil flow characteristics. Based on the single parameter analysis results and the least squares method, the damping force regression equation was established and verified. The results show that the lattice Boltzmann method can accurately analyze the oil hole damping performance. The oil hole length changes the position of the flow minimum contraction section in the oil hole, the variation of the oil hole diameter in a limited interval has little effect on the discharge coefficient, and the increase of the backpressure improves the oil hole flow quality. The regression equation can predict the damping force reliably in the design interval, and the method can be used in general landing gear oil hole design.

关键词

阻尼特性 / 起落架 / 油孔阻尼力 / 回归方程 / 计算流体动力学

Key words

damping characteristics / landing gear / orifice damping force / regression equation / computational fluid dynamics

引用本文

导出引用
甘盛勇1,2,3,魏小辉 1,2,3,房兴波1,2,3. 基于格子Boltzmann方法的起落架阻尼油孔参数研究[J]. 振动与冲击, 2023, 42(2): 182-188
GAN Shengyong1,2,3,WEI Xiaohui1,2,3,FANG Xingbo1,2,3. Analysis on the damping oil hole parameters of a landing gear based on lattice Boltzmann method[J]. Journal of Vibration and Shock, 2023, 42(2): 182-188

参考文献

[1] 孙浩, 尹乔之, 魏小辉, 等. 新型自适应起落架的单支腿落震性能研究[J/OL]. 北京航空航天大学学报, https://doi.org/10.13700/j.bh.1001-5965.2021.0354, 2021-11-09.
SUN Hao, YIN Qiaozhi1, WEI Xiaohui, et al. Research of Single Leg Drop Performance of New Adaptive Landing Gear[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, https://doi.org/10.13700/j.bh.1001-5965.2021. 0354, 2021-11-09.
[2] 冯蕴雯, 朱铮铮, 潘文廷, 等. 基于多体动力学的尾撬缓冲器动态性能研究[J]. 振动与冲击, 2020,39(08): 271-276.
FENG Yunwen, ZHU Zhengzheng, PAN Wenting, et al. Research on dynamic performance of tail skid shock absorber based on multi-body dynamics[J]. Journal of Vibration and Shock, 2020,39(08): 271-276.
[3] 高泽迥, 黄振威, 于俊虎. 飞机设计手册第 14 分册: 起飞着陆系统设计[M]. 北京: 航空工业出版社, 2002.
GAO Zejiong, HUANG Zhenwei, YU Junhu. Aircraft Design Manual: Take-Off and Landing System Design[M]. Aviation industry press, Beijing, 2002.
[4] THARAKAN T J, RAFEEQUE T A. The role of backpressure on discharge coefficient of sharp edged injection orifices[J]. Aerospace Science and Technology, 2016,49: 269-275.
[5] YU B, FU P F, ZHANG T, et al. The influence of back pressure on the flow discharge coefficients of plain orifice nozzle[J]. International Journal of Heat and Fluid Flow, 2013,44: 509-514.
[6] ABD H M, ALOMAR O R, MOHAMED I A. Effects of varying orifice diameter and Reynolds number on discharge coefficient and wall pressure[J]. Flow Measurement and Instrumentation, 2019,65: 219-226.
[7] JIANG L, LIU Z, LYU Y. Internal flow and discharge coefficient characteristics of oil jet nozzles with different orifice angles under non-cavitating conditions[J]. Aerospace Science and Technology, 2021,110: 106473.
[8] MAZZEI L, WINCHLER L, ANDREINI A. Development of a numerical correlation for the discharge coefficient of round inclined holes with low crossflow[J]. Computers & Fluids, 2017,152: 182-192.
[9] KRAUSE M J, KUMMERLÄNDER A, AVIS S J, et al. OpenLB—Open source lattice Boltzmann code[J]. Computers & Mathematics with Applications, 2021,81: 258-288.
[10] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型[J/OL]. 物理学报, http://kns.cnki.net/kcms/ detail/11.1958.O4.20210722.1036.002.html, 2021-11-09.
ZHANG Qianyi, WEI Huajian, LI Huabing. Multi-segment lymphatic vessel model based on lattice Boltzmann method[J/OL]. Acta Physica Sinica, http://kns.cnki.net/kcms/ detail/11.1958.O4.20210722.1036.002.html, 2021-11-09.
[11] CHEN Z, SHU C, YANG L M, et al. Phase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change[J]. Physical Review E, 2021,103(2): 23308.
[12] EICHLER P, FUKA V, FUČÍK R. Cumulant lattice Boltzmann simulations of turbulent flow above rough surfaces[J]. Computers & Mathematics with Applications, 2021,92: 37-47.
[13] HAN M, OOKA R, KIKUMOTO H. Lattice Boltzmann method-based large-eddy simulation of indoor isothermal airflow[J]. International Journal of Heat and Mass Transfer, 2019,130: 700-709.
[14] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究[J]. 物理学报, 2017,66(22): 252-265.
WU Xiaodi, LIU Huaping, CHEN Fu. A method combined boundary with multi-relaxation-time lattice Boltzmann flux solver for fluid-structure interaction[J]. Acta Physica Sinica, 2017,66(22): 252-265.
[15] STRACK O E, COOK B K. Three‐dimensional immersed boundary conditions for moving solids in the lattice‐Boltzmann method[J]. International Journal for Numerical Methods in Fluids, 2007,55(2): 103-125.
[16] DING Y W, WEI X H, NIE H, et al. Discharge coefficient calculation method of landing gear shock absorber and its influence on drop dynamics[J]. Journal of Vibroengineering, 2018,20(7): 2550-2562.
[17] 丁勇为, 张子豪, 魏小辉, 等. 油孔几何参数对起落架落震动力学的影响研究[J]. 航空计算技术, 2018(01): 30-33.
DING Yongwei, ZHANG Zihao, WEI Xiaohui, et al. Influence of Orifice Geometry Parameters on Landing Gear Drop Dynamics[J]. Aeronautical Computing Technique, 2018(01): 30-33.
[18] 蔺越国, 程家林, 冯振宇, 等. 飞机起落架缓冲支柱参数化模型及优化分析[J]. 系统仿真学报, 2008(10): 2732-2735.
LIN Yueguo, CHENG Jialin, FENG Zhenyu, et al. Parameter Modeling and Optimization Analysis for Landing Gear Absorber[J]. Journal of System Simulation, 2008(10): 2732-2735.
[19] 聂文忠, 陆建民, 马亚健, 等. 起落架缓冲器阻尼孔特性分析[J]. 机床与液压, 2021,49(01): 151-155.
NIE Wenzhong, LU Jianmin, MA Yajian, et al. Analysis on the Characteristics of the Damping Hole of Landing Gear Buffer[J]. Machine Tool & Hydraulics, 2021,49(01): 151-155.
[20] KRÜGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method: Principles and Practice[M]. New York:Springer ,2017: 4-15.
[21] CHENG P, LI Q, CHEN H. Flow characteristics of a pintle injector element[J]. Acta Astronautica, 2019,154: 61-66.

PDF(2089 KB)

382

Accesses

0

Citation

Detail

段落导航
相关文章

/