高柔塔风电机组具有轻质、高耸、低阻尼等特点,使得其对各种激励源的动力反应更为敏感,其振源的识别和研究对机组运行时的安全评估具有重要意义。以某140米级高柔塔风电机组塔筒为研究对象,测量其不同高度处的振动响应信号,利用谱峭度法识别诱发塔筒振动的主要振源类型及其特性,通过小波包分解和小波包能量计算原理对实测信号进行分解得到表征各振源特性的频域分量和能量占比,最后对不同工况和不同测点位置的振源特性及其能量占比进行统计,发现:在高柔塔风电机组的全生命周期内塔筒结构始终受到其1阶自振或风轮旋转等周期性强振源激励作用,随着发电功率的增加,强振源由单一的1阶自振激励转为1阶自振与风轮旋转联合激励再到完全风轮旋转激励的变化规律,并且在高转速区,风轮的倍频与塔筒的多个模态频率接近,容易引起共振。
Abstract
The high-soft tower wind turbine has the characteristics of light weight, high rise and low damping, which makes it more sensitive to the dynamic response of various excitation sources. The identification and research of vibration sources is of great significance to the safety evaluation of the unit during operation. In this paper, taking the tower of a 140 meter high-soft tower wind turbine as the research object, the vibration response signals at different heights are measured, and the main vibration source types and characteristics inducing tower vibration are identified by spectral kurtosis method. The measured signals are decomposed by wavelet packet decomposition and wavelet packet energy principle to obtain the frequency domain components and energy proportion representing the characteristics of each vibration source, Finally, the vibration source characteristics and energy proportion at different working conditions and different measuring points are counted. It is found that the tower structure is always excited by periodic strong vibration sources such as its first-order natural vibration and wind turbine rotation in the whole life cycle of wind turbine. With the increase of power generation, The strong vibration source changes from the single first-order natural vibration excitation to the combined excitation of first-order natural vibration and wind turbine rotation, and then to the complete wind turbine rotation excitation. In the high speed region, the frequency doubling of wind turbine is close to multiple modal frequencies of tower, which is very easy to cause resonance.
关键词
高柔塔风电机组 /
振源识别 /
谱峭度 /
小波包分解和小波包能量 /
周期性振源 /
共振
{{custom_keyword}} /
Key words
high-soft tower wind turbine /
vibration source identification /
spectral kurtosis /
wavelet packet decomposition and wavelet packet energy /
periodic vibration source;resonance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 巫发明,杨从新,王青,等. 大型风电机组塔筒动态载荷识别研究与验证[J]. 振动与冲击,2020, 39(20):197-203.
WU Fa-ming, YANG Cong-xin,WANG Qing,et al.Research and verification of dynamic load identification of large wind turbine tower[J].Journal of vibration and shock,2020, 39(20):197-203.
[2] 邓敏强,邓艾东,朱静,等. 基于模态叠加法的风电机组塔架实时状态研究[J]. 太阳能学报,2021, 42(3):63-70.
DENG Min-qiang,DENG Ai-dong,ZHU Jing,et al,Reseach on real-time state of wind turbine tower based on modal superposition method[J].Acta energiae solaris sinica,2021,42(3):63-70.
[3] 马人乐,马跃强,刘慧群,等. 风电机组塔筒模态的环境脉动实测与数值模拟研究[J]. 振动与冲击,2011, 30(5):152-155.
MA Ren-le,MA Yue-qiang,LIU Hui-qun,et al,Ambient vibrat-ion test and numerical simulation for modes of wind turbine t towers[J].Journal of vibration and shock,2011,30(5):152-155.
[4] 黄竹也,裘浩锋,苗亚超,等.1.5MW风机结构的模态参数识 别[J].噪声与振动控制,2020,40(4):53-56.
HUANG Zhu-ye,QIU Hao-feng,MIAO Ya-chao,et al,Modal Parameter identification of 1.5MW wind turbine structure[J].Noise and vibration control,2020,40(4):53-56.
[5] 胡佳苗,杭晓晨,朱锐,等.周期激励下的风机塔架模态识别方法[J].噪声与振动控制,2021,41(4):239-246.
HU Jia-miao,HANG Xiao-chen,ZHU Rui,et al.Modal identifi-Cation method of wind turbine towers under periodic excitation[J].Noise and vibration control,2021,41(4):53-56.
[6] 夏遵平,王彤.基于谱峭度的谐波模态检测方法[J].工程力学,2013,30(12):255-258.
XIA Zun-ping,WANG Tong.Detection of harmonic modes with spectral kurtosis[J].Engineering mechanics,2013,30(12):255-258.
[7] DION J L,STEPHAN C,CHEVALLIER G,et al.Tracking and Removing modulated sinusoidal components:A solution based on the kurtosis and the Extended Kalman Filter[J].Mechanical Systems and signal processing,2012,26:24-33.
[8] 沈超,钱德玲.基于小波包能量的地基土对框架结构地震损伤影响实验研究[J].振动与冲击,2019,38(16):175-180.
SHEN Chao,QIAN De-ling.Experiment investigation of the seismic damage effect of foundation on frame-core tube structures considering foundation soil based on the wavelet packet energy[J].Journal of vibration and shock,2019,38(16):175-180.
[9] 郭伟超,赵怀山,李成,等.基于小波能量谱与主成分分析的轴承故障特征增强诊断方法[J].兵工学报,2019,40(11):2370-2377.
GUO Wei-chao,ZHAO Huai-shan,LI Cheng,et al.Fault feature enhancement method for rolling bearing fault diagnosis based on wavelet packet energy spectrum and principal component analysis[J].Acta armamentarii,2019,40(11):2370-2377.
[10] 王超,黄彩萍,艾德米,等.基于统计小波包能量分布的结构健康状况预警[J].土木工程与管理学报,2016,33(6):12-15.
WANG Chao,HUANG Cai-ping,AI De-mi,et al.Structure health alarming based on statistical wavelet packet energy distribution[J].Journal of civil engineering and management,2016,33(6):12-15.
[11] 甄东,朱继瑞,张琛,等.基于小波包能量与峭度谱的滚动轴承故障诊断[J].机械设计,2021,38(2):23-28.
ZHEN Dong,ZHU Ji-rui,ZHANG Chen,et al.Fault diagnosis of rolling bearing based on wavelet packet energy and spectral kurtosis[J].Journal of machine design,2021,38(2):23-28.
[12] 杨婷婷,李岩,林雪绮.基于车辆制动激励和小波包能量分析的连续梁桥基础冲刷识别方法[J].中国公路学报,2021,34(4):51-60.
YANG Ting-ting,LI Yan,LIN Xue-qi.Foundation scour identif-Ication method based on vehicle braking excition and wavelet Packet energy analysis for continuous beam bridges[J].China
Journal of highway and transport,2021,34(4):51-60.
[13] 董霄峰.海上风机结构振动特性分析与动态参数识别研究[D].天津:天津大学,2015.
[14] 董霄峰,练继建,王海军.运行状态下海上风机结构振源特性研究[J].振动与冲击,2017,36(17):21-28.
DONG Xiao-feng,LIAN Ji-jian,WANG Hai-jun.Vibration so-urce features of offshore wind power structures under operat-ional conditions[J].Journal of vibration and shock,2017,36
:21-28.
[15] 李益.三桩基础海上风机发电结构的自振特性分析[D].大连:大连理工大学,2013.
[16] 郭亚.振动信号中的小波基选择研究[D].合肥:合肥工业大学,2003.
[17] 凌同华,李夕兵.单段爆破振动信号频带能量分布特征的小波包分析[J].振动与冲击,2007,26(5):41-43.
LING Tong-hua,LI Xi-bing.Features of energy distribution of single deck blast vibration signals with wavelet packet analysis[J].Journal of vibration and shock,2007,26(5):41-43.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}