不同结构Terfenol-D棒的高频振动性能研究

刘强,贺西平

振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 244-250.

PDF(2780 KB)
PDF(2780 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 244-250.
论文

不同结构Terfenol-D棒的高频振动性能研究

  • 刘强,贺西平
作者信息 +

High frequency vibration performances of Terfenol-D rods with different structures

  • LIU Qiang, HE Xiping
Author information +
文章历史 +

摘要

为了高效应用Terfenol-D棒,本文研究了六种结构的棒。利用有限元软件对不同棒的磁芯损耗进行了仿真计算,并对其进行动力学仿真研究。加工了其中三种结构的棒,对棒的输出振幅进行了实验测试。结果表明:外径表面处,未处理棒的磁芯损耗最大;切片处理和切缝处理棒的磁芯损耗均减小,切片处理棒的磁芯损耗小于切缝处理。外径切缝棒整体的损耗最大;径向切割并粘接棒和切片处理棒整体的损耗小于未处理棒和外径切缝棒;两端切片棒整体的损耗大于切片并开槽棒和切片处理棒。未处理棒的谐振频率最高,机械品质因数最大,振幅最小;与未处理棒相比,切片处理棒或切缝处理棒的谐振频率和机械品质因数减小,振幅增大;切片处理棒的谐振频率和机械品质因数小于切缝处理棒,振幅远大于切缝处理棒。

Abstract

To efficiently apply Terfenol-D rods, six kinds of rods are studied in this paper. Finite element software was used to analyze and calculate the core loss of rods with different structures, and the dynamic simulation study was performed. Three types of rods were processed, and the output amplitude of the rods was tested experimentally. The results show that the core loss of untreated rod is the largest at the outer diameter surface; the core loss of slicing and slotting rods is reduced, and the core loss of slicing rods is less than that of slotting rods. The overall loss of the radial slitting rod is the largest; the overall loss of the radial cutting and bonding rod and the slicing treatment rod is less than that of the untreated rod and the radial slitting rod; the overall loss of the slicing rod at both ends is greater than that of the slicing and slotting rod and the slicing treatment rod. The untreated rod has the highest resonance frequency, the biggest mechanical quality factor, and the smallest amplitude; compared with untreated rods, the resonant frequency and mechanical quality factor of slicing rods or slitting rods are reduced, and the amplitude is increased; the resonant frequency and mechanical quality factor of the slicing treatment rod are smaller than that of the slitting treatment rod, and the amplitude is much larger than that of the slitting treatment rods.

关键词

Terfenol-D棒 / 磁芯损耗 / 输出振幅 / 有限元计算

Key words

Terfenol-D rod / core loss / output amplitude / finite element calculation

引用本文

导出引用
刘强,贺西平. 不同结构Terfenol-D棒的高频振动性能研究[J]. 振动与冲击, 2023, 42(2): 244-250
LIU Qiang, HE Xiping. High frequency vibration performances of Terfenol-D rods with different structures[J]. Journal of Vibration and Shock, 2023, 42(2): 244-250

参考文献

[1]  Yao Y, Pan Y, Liu S Q. Power ultrasound and its applications: a state-of-the-art review[J]. Ultrasonics Sonochemistry, 2020, 62(04):104722.
[2]  李鹏阳, 刘强, 李伟, 等. 超磁致伸缩超声换能器结构研究[J]. 振动与冲击, 2021, 40(11):196-201.
LI Pengyang, LIU Qiang, LI Wei, et al. Research on structure of giant magnetostrictive ultrasonic transducer[J]. Journal of Vibration and Shock, 2021, 40(11):196-201.
[3]  Pernía A M, Mayor H A, Prieto M J, et al. Magnetostrictive sensor for blockage detection in pipes subjected to high temperatures[J]. Sensors, 2019, 19(10):2382.
[4]  Liu H F, Li W C, Sun X W, et al. Enhanced the capability of magnetostrictive ambient vibration harvester through structural configuration, pre-magnetization condition and elastic magnifier[J]. Journal of Sound and Vibration, 2012 492(3):115805.
[5]  王晓煜, 刘海龙, 高斯佳, 等. 基于超磁致伸缩换能器的CFRP板孔裂纹缺陷检测[J].振动与冲击, 2020, 39(23): 202-210.
WANG Xiaoyu, LIU Hailong, GAO Sijia, et al. Hole crack damage detection of CFRP plate based on super-magneto-strictive transducer[J]. Journal of Vibration and Shock, 2020, 39(23):202-210.
[6]  Zirka S E, Moroz Y I, Marketos P, et al. Evolution of the loss components in ferromagnetic laminations with induction level and frequency[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(20):e1039-e1043.
[7]  Hwang K H, Kim S R, Lee J H, et al. Design of a magnetostrictive actuator considering magnetic bias and ohmic heat[J]. International Journal of Applied Electromagnetics and Mechanics, 2014, 45(1): 867-871.
[8]  Cai W C, Feng P F, Zhang J F, et al. Effect of temperature on the performance of a giant magnetostrictive ultrasonic transducer[J]. Journal of Vibroengineering, 2016, 18(2):1307-1317.
[9]  Engdahl G, Bergqvist A. Loss simulations in magnetostrictive actuators[J]. Journal of Applied Physics, 1996, 79(8):4689-4691.
[10] Stillesjo F, Engdahl G, Wei Z G, et al. Dynamic simulation and performance study of magnetostrictive transducers for ultrasonic applications[J]. Spies Annual International Symposium on Smart Structures & Materials, 2000, 3992:594-602.
[11] Huang W M, Gao C Y, Li Y F, et al. Experimental and calculating analysis of high-frequency magnetic energy losses for Terfenol-D magnetostrictive material[J]. IEEE Transactions on Magnetics, 2018, 54(11):1-4.
[12] Tang Z F, Lv F Z, Liu Y. Magnetic field distribution in the cross section of Terfenol-D rod and its application[J]. Journal of Rare Earths, 2009, 27(3):525-528.
[13] 贺西平. 稀土超磁致伸缩换能器[M]. 北京:科学出版社, 2006.
[14] 李淑英, 王博文, 周严. 叠层复合磁致伸缩材料驱动器的输出位移特性[J]. 仪器仪表学报, 2009, 30(01): 71-75.
LI Shuying, WANG Bowen, ZHOU Yan, et al. Output displacement of actuator based on Terfenol-D multilayered composite[J]. Chinese Journal of Scientific Instrument, 2009, 30(1): 71–75.
[15] Teng D, Li Y T. Finite element solutions for magnetic field problems in Terfenol-D transducers[J]. Sensors, 2020, 20 (10): 2808.
[16] Si C R, Zhang X J, Wang J B. Effect of axial grooves on eddy current loss within giant magnetostrictive material (GMM) rod[J]. Applied Mechanics & Materials, 2014, 574:615-620.
[17] Gandomzadeh D, Abbaspour-Fard M H. Numerical study of the effect of core geometry on the performance of a magnetostrictive transducer[J]. Journal of Magnetism and Magnetic Materials, 2020, 513:166823.
[18] Li P Y, Liu Q, Zhou X, et al. Effect of Terfenol-D rod structure on vibration performance of giant magnetostrictive ultrasonic transducer[J]. Journal of Vibration and Control, 2020, 27(2):107754632093202.
[19] 纪良. 超磁致伸缩电静液作动器温度场分布与热位移特性研究[D]. 南京: 南京航空航天大学, 2016.

PDF(2780 KB)

1181

Accesses

0

Citation

Detail

段落导航
相关文章

/