本文研究了水平激励下二维矩形储箱中流体的晃动,抑制晃动的装置为竖向的刚性隔板,建立了隔板在储箱自由液面处的解析模型。首先通过引入人工界面的方式,将流体域划分成若干个流体子域,使每个流体子域对应的速度势函数满足C1连续性条件。基于叠加原理,使用分离变量法求得每个流体子域的速度势的形式解,将形式解代入子域间界面与自由液面条件可得含有待定系数的级数方程,通过加权积分消去方程中的空间坐标,截断方程可得特征方程,由此可得晃动频率与模态。将水平激励下的速度势函数分解为摄动速度势与刚体速度势,将摄动速度势和刚体速度势代入自由液面的波动方程即可求得含广义坐标的动力响应方程,求解该方程可得储箱中流体的晃动响应。
Abstract
The sloshing of liquid in a 2-D rectangular container under horizontal excitation is investigated. The sloshing control device is a rigid vertical baffle. The analytical models of the baffle at free surface are established, respectively. Firstly, the liquid domain is divided into several liquid subdomains has continuous boundary conditions of class C1 by introducing artificial interfaces. Based on the superposition principle, the formal solution of the velocity potential of each liquid subdomain is obtained using the separation of variables method. The formal solution is substituting into the interface between the subdomains and the free liquid surface condition gives the series equation with the determined coefficients. The spatial coordinates in the equation are eliminated by weighted integration, and the characteristic equation is obtained by truncating the equation. The sloshing frequency and mode obtained by the characteristic equation. The total velocity potential function under lateral excitation is taken as the sum of the container potential function and the liquid perturbed potential function. The dynamic response equation with generalized coordinates can be obtained by substituting the perturbation velocity potential and rigid body velocity potential into the wave equation of liquid surface. The sloshing response of liquid in the container is obtained by solving the equation.
关键词
竖向隔板 /
矩形储箱 /
水平激励 /
刚体速度势 /
摄动速度势
{{custom_keyword}} /
Key words
vertical baffle /
rectangular container /
horizontal excitation /
the container potential function /
the liquid perturbed potential function
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Belakroum R, Kadja M , Mai T H , et al. An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid[J]. Mechanics Research Communications, 2010, 37(3):341-346.
[2] Goudarzi M A, Sabbagh-Yazdi S R. Investigation of nonlinear sloshing effects in seismically excited tanks[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 355-365.
[3] 秦念, 周叮, 刘伟庆,等. 水平激励下任意截面柱形储液罐内液体的晃动响应[J]. 工程力学, 2015,32(2):178-182
QIN Nian, ZHOU Ding,LIU Wei-qing,et al.Sloshing response of liquid in cylindrical tank with arbitrary cross-cextion under lateral excitions[J].Engineering Mechanics,2015,32(2):178-182
[4] Cho I H. Liquid sloshing in a swaying/rolling rectangular tank with a flexible porous elastic baffle[J]. Marine Structures, 2021, 75: 102865.
[5] 王佳栋, 周叮, 刘伟庆. 带环形隔板圆柱形储液罐中流体晃动的解析研究[J]. 振动与冲击, 2010, 29(2): 54-59.
WANG Jia-dong, ZHOU Ding, LIU Wei-qing,et al. Analytical solution for liquid sloshing with small amplitude in a cylindrical tank with an annual baffle[J].Journal of Vibration and Shock ,2010, 29(2): 54-59.
[6] 房忠洁, 周叮, 王佳栋,等. 带隔板的矩形截面渡槽内液体的晃动特性[J]. 振动与冲击, 2016, 35(3):169-175.
FANG Zhong-jie,ZHOU Ding,WANG Jia-dong,et al. Sloshing characteristics of liquid in a rectangular aqueduct with baffle[J]. Journal of Vibration and Shock, 2016, 35(3):169-175.
[7] 应磊, 周叮, 房忠洁. 带隔板矩形贮箱俯仰晃动研究[J]. 振动与冲击, 2018, 37(8):54-67.
YING Lei,ZHOU Ding,FANG Zhongjie. Analysis of pitching motion on rectangular adequate with a baffle[J]. Journal of Vibration and Shock, 2018, 37(8): 54-67.
[8] Wang J D, Lo S H, Zhou D. Sloshing of liquid in rigid cylindrical container with multiple rigid annular baffles: Lateral excitations[J]. Journal of Fluids and Structures, 2013, 42: 421-436.
[9] Jin H, Liu Y, Li H J. Experimental study on sloshing in a tank with an inner horizontal perforated plate[J]. Ocean Engineering, 2014, 82: 75-84.
[10] Tsao W H , Chang T J . Sloshing Phenomenon in Rectangular and Cylindrical Tanks Filled with Porous Media: Supplementary Solution and Impulsive-Excitation Experiment[J]. Journal of Engineering Mechanics, 2020, 146(12):1-13.
[11] Koh C G, Luo M, Gao M, et al. Modelling of liquid sloshing with constrained floating baffle[J]. Computers & Structures, 2013, 122: 270-279.
[12] Meng X, Zhou D, Wang J. Effect of Vertical Elastic Baffle on Liquid Sloshing in Rectangular Rigid Container[J]. International Journal of Structural Stability and Dynamics, 2021, 21(12): 2150167.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}