滚动轴承复合故障的时频能量聚集谱诊断方法

袁静, 姚泽,胡雯玥,蒋会明,赵倩

振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 285-292.

PDF(1930 KB)
PDF(1930 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 285-292.
论文

滚动轴承复合故障的时频能量聚集谱诊断方法

  • 袁静, 姚泽,胡雯玥,蒋会明,赵倩
作者信息 +

Time-frequency energy aggregation spectrum diagnosis method for compound faults of rolling bearings

  • YUAN Jing, YAO Ze, HU Wenyue, JIANG Huiming, ZHAO Qian
Author information +
文章历史 +

摘要

共振解调技术是轴承故障诊断领域中广泛应用的有效方法,其中解调频带的选取至关重要。传统解调方法仅能识别特征明显的单一轴承故障,而面对旋转机械轴承复合故障的异样微弱特征提取以及不同故障所引发的多个最优解调频带问题时往往难以奏效。为此,提出时频能量聚集谱诊断方法。该方法引入多重同步压缩变换,构造能量聚集的时频图,以解决最优解调频带精确性问题,同时提出能量聚集谱相对因子指标,通过指标实现强弱多故障特征频带综合提取、同步且准确输出,为旋转机械复杂动态信号中微弱和复合轴承故障特征提取与识别提供有利依据。实验结果表明本方法能成功提取出轴承复合故障特征。

Abstract

Resonance demodulation technology is an effective method widely used in the field of bearing fault diagnosis, in which the selection of demodulation frequency band is crucial. Traditional demodulation methods can only identify single bearing faults with obvious features, but it is often difficult to extract abnormal weak features for composite faults of rotating machinery bearings and to select multiple optimal demodulation bands caused by different faults. For this reason, the time-frequency energy aggregation spectrum diagnosis method is proposed. The method introduces multisynchrosqueezing transform to construct a time-frequency representation with high energy concentration to solve the problem of optimal demodulation band accuracy, and also proposes the relative factor index of energy aggregation spectrum to realize the comprehensive extraction, synchronization and accurate output of strong and weak multi-fault feature bands through the index, which provides a favorable basis for the extraction and identification of weak and composite bearing fault features in complex dynamic signals of rotating machinery. The experimental results show that this method can successfully extract the bearing compound fault features.

关键词

旋转机械 / 滚动轴承 / 故障诊断 / 时频分析

Key words

Rotating machinery / rolling bearing / fault diagnosis / time-frequency analysis

引用本文

导出引用
袁静, 姚泽,胡雯玥,蒋会明,赵倩. 滚动轴承复合故障的时频能量聚集谱诊断方法[J]. 振动与冲击, 2023, 42(2): 285-292
YUAN Jing, YAO Ze, HU Wenyue, JIANG Huiming, ZHAO Qian. Time-frequency energy aggregation spectrum diagnosis method for compound faults of rolling bearings[J]. Journal of Vibration and Shock, 2023, 42(2): 285-292

参考文献

[1] 向玲, 李营. 风力发电机轴承复合故障特征提取方法研究[J]. 振动与冲击, 2020, 39(09): 144-151+187.
XIANG Ling, LI Ying. Feature extraction method for bearing composite faults of a wind turbine [J]. Journal of vibration and shock, 2020, 39(09): 144-151+187.
[2] 袁静, 魏颖, 訾艳阳, 等. 自适应多小波混合构造方法及在故障诊断中应用 [J]. 振动与冲击, 2016, 35(23): 6-13.
     YUAN Jing, WEI Ying, ZI Yanyang, et al. Adaptive multiwavelet hybrid construction method and applications in fault diagnosis [J]. Journal of vibration and shock, 2016, 35(23): 6-13.
[3] 刘朋, 刘韬, 王思洪, 等. 基于信息融合与FastICA的轴承故障提取方法 [J]. 振动与冲击, 2020, 39(03): 250-259.
LIU Peng, LIU Tao, WANG Sihong, et al. Bearing fault diagnosis method based on information fusion and fast ICA [J]. Journal of vibration and shock, 2020, 39(03): 250-259.
[4] 沈长青, 谢伟达, 朱忠奎, 等.基于EEMD和改进的形态滤波方法的轴承故障诊断研究 [J].振动与冲击, 2013, 32(02): 39-43+66.
SHEN Changqing, XIE Weida, ZHU Zhongkui, et al. Rolling element bearing fault diagnosis based on EEMD and improved morphological filtering method [J]. Journal of vibration and shock, 2013, 32(02): 39-43+66.
[5] 姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列
熵和 SA-SVM 的轴承故障诊断研究 [J]. 机械工程学报, 2018(9): 168-176.
YAO Dechen, YANG Jianwei, CHENG Xiaoqing, et al. Railway rolling bearing fault diagnosis based on muti-scale lMF permutation entropy and SA-SVM classifier [J]. Journal of Mechanical Engineering, 2018(9): 168-176.
[6] 胡超凡, 王衍学. 基于张量分解的滚动轴承复合故障多通道信号降噪方法研究 [J]. 机械工程学报, 2020, 55(12): 50-57.
HU Chaofan, WANG Yanxue. Research on multi-channel signal denoising method for multiple faults diagnosis of rolling element bearings based on tensor factorization [J]. Journal of Mechanical Engineering, 2020, 55(12): 50-57.
[7] 向玲,李京蓄,胡爱军,等.基于SK-MOMEDA的风电机组轴承复合故障特征分离提取 [J].振动.测试与诊断,2021, 41(04): 644-651+826.
XIANG Ling, LI Jingxu, HU Aijun, et al. Separation and Extraction of Composite Fault Characteristics of Wind Turbine Bearing Based on SK-MOMEDA [J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(04): 644-651+826.
[8] WIANG Y, LANG M. Identification of multiple transient faults based on the adaptive spectral kurtosis method [J]. Journal of Sound and Vibration, 2012, 331(2): 470-486.
[9] 张龙, 熊国良,黄文艺. 复小波共振解调频带优化方法和新指标 [J]. 机械工程学报, 2015, 51(3): 129-138.
ZHANG Long, XIONG Guoliang, HUANG Wenyi. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation [J]. Journal of Mechanical Engineering, 2015, 51(3):129-138.
[10] He D, Wang X, Li S, et al. Identification of multiple faults in rotating machinery based on minimum entropy deconvolution combined with spectral kurtosis [J]. Mechanical Systems and Signal Processing, 2016, 81: 235-249.
[11] 贺王鹏,訾艳阳,陈彬强,等.周期稀疏导向超小波在风力发电设备发电机轴承故障诊断中的应用 [J].机械工程学报,2016, 52(03): 41-48.
HE Wangpeng, ZI Yanyang, CHEN Binqiang, et al. Periodic sparsity oriented super-wavelet analysis with application to motor bearing fault detection of wind turbine [J]. Journal of Mechanical Engineering, 2016, 52(03): 41-48.
[12] Chen X, Li X, Wang S, et al. Composite damage detection based on redundant second-generation wavelet transform and fractal dimension tomography algorithm of lamb wave [J]. IEEE transactions on instrumentation and measurement, 2012, 62(5): 1354-1363.
[13] 张进,冯志鹏,褚福磊.滚动轴承故障特征的时间—小波能量谱提取方法 [J].机械工程学报, 2011, 47(17): 44-49.
ZHANG Jin, FENG Zhipeng,CHU Fulei. Extraction of rolling bearing fault feature based on time-wavelet energy spectrum [J]. Journal of Mechanical Engineering, 2011, 47(17): 44-49.
[14] Antoni J, Randall R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines [J]. Mechanical systems and signal processing, 2006, 20(2): 308-331.
[15] Antoni J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
[16] 李红贤,汤宝平,韩延,等.基于增强熵权峭度图的滚动轴承最优频带解调的故障诊断 [J].振动与冲击, 2019, 38(17): 24-31+50.
LI Hongxian, TANG Baoping, HAN Xian, et al. Fault diagnosis of rolling bearings using optimal demodulation frequency band based on enhanced entropy weight kurtosis graph [J]. Journal of Vibration and Shock, 2019, 38(17): 24-31+50.
[17] 苏文胜, 王奉涛, 张志新, 等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用 [J]. 振动与冲击, 2010, 29(3): 18-21.
SU Wensheng, WANG Fengtao, ZHANG Zhixin, et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings [J]. Journal of Vibration and Shock, 2010, 29(3): 18-21.
[18] Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE transactions on signal processing, 2013, 62(3): 531-544.
[19] Yuan J, Yao Z, Zhao Q, et al. Dual-Core Denoised Synchrosqueezing Wavelet Transform for Gear Fault Detection [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
[20] Yu G, Wang Z, Zhao P. Multisynchrosqueezing transform [J]. IEEE Transactions on Industrial Electronics, 2018, 66(7): 5441-5455.
[21] 高冠琪, 黄伟国, 李宁, 等. 基于时频挤压和阶比分析的变转速轴承故障检测方法 [J].振动与冲击, 2020, 39(03): 205-210+226.
GAO Guanqi, HUANG Weiguo. LI Ning, et al. Fault detection method for varying rotating speed bearings based on time-frequency squeeze and order analysis [J]. Journal of Vibration and Shock, 2020, 39(03): 205-210+226.
[22] R.G. Baraniuk, P. Flandrin, A.J.E.M. Janssen, et. al., Measuring time-frequency information content using the Rényi entropies, =IEEE Transactions on Information Theory, 47(2001) 1391–1409.
[23] S. Aviyente, W.J. Williams, Minimum entropy time-frequency distributions, IEEE Signal Processing Letters 12 (2005) 37–40.
[24] 沈玉成, 孙冬梅, 袁倩. 基于峭度的概率密度分析法在风电回转支承故障诊断中的应用研究 [J]. 机床与液压, 2017, 45(23): 182-184+181.
SHEN Yucheng, SUN Dongmei, YUAN Qian. Applied research of analysis method of probability density based on kurtosis in fault diagnosis for wind turbine bearings [J]. Machine Tool & Hydraulics, 2017, 45(23): 182-184+181.
[25] 王晶, 陈果, 郝腾飞. 强噪声背景下的滚动轴承故障微弱信号检测新方法 [J]. 轴承, 2012, 3: 42-46.
WANG Jing, CHEN Guo, HAO Tengfei. A New Detection Method for Weak Signals of Rolling Bearing Faults Under Strong Noise Background [J]. Bearing, 2013, 3: 42-46.
[26] Wang Y, Markert R. Filter bank property of variational mode decomposition and its applications [J]. Signal Processing, 2016, 120: 509-521.

PDF(1930 KB)

540

Accesses

0

Citation

Detail

段落导航
相关文章

/