加工误差是影响RV减速器传动精度的关键因素。为评估多种加工误差对该机构的传动误差的影响机制,基于轮齿接触分析方法构建了考虑齿廓修形、加工误差和装配误差时渐开线齿轮及摆线针轮两级传动的轮齿接触方程,得到不同制造误差作用下摆线针轮行星传动误差分析模型,并评估了各种制造误差对机构传动误差的灵敏度;然后以该灵敏度为公差等级选择依据,将RV减速器的各项加工误差表达为以公差等级IT5、IT6为基础产生的高斯分布随机数,通过随机抽样误差来分析各组误差样本下RV减速器不发生干涉的可靠度,以及传动误差分布情况。计算结果表明,针齿位置度误差、摆线轮齿距累积误差对传动误差的影响最大;渐开线齿轮偏心量误差和曲柄轴偏心量误差的影响较小;针齿半径误差的影响最小。将灵敏度较小的加工误差设为IT6,灵敏度较高的加工误差设为IT5,可得到所有加工误差均为IT5时的传动误差精度要求,其可靠度达98%且加工成本更低,从而为RV减速器加工精度选用和制造成本控制提供依据。
Abstract
Manufacturing error is the key factor affecting the transmission accuracy of RV reducer. On the basis of the gear tooth contact analysis method, a new gear tooth contact equation for two-stage transmission of involute gear and cycloidal pin gear is constructed to evaluate the influence mechanism of various manufacturing errors on transmission error of RV reducer considering tooth profile modification, machining error and assembly error. The prediction model of transmission error for cycloid pinwheel mechanism with different manufacturing errors is obtained to calculate the the sensitivities of various manufacturing errors for the transmission error. Sensitivities are also used as the basis for the selection of tolerance levels IT5 or IT6. According to different tolerance levels, manufacturing errors are expressed as Gaussian random numbers. Furthermore the reliability of the RV reducer without interference is analyzed and the distribution of transmission errors are obtained through random sampling errors under each group of error samples. The results show that the position error of the pin and the cumulative pitch error of the cycloid gear have the greatest influence on the transmission error, the eccentricity error of involute gear and crank shaft has little influence, and the influence of the pin radius error is the least. When the machining errors with lower sensitivity are set to IT6 and the ones with higher sensitivity are IT5, the transmission error accuracy requirements when all machining errors are IT5 can be obtained, the reliability is 98%, and the machining cost is lower. It can be as the basis for the manufacturing tolerance selection and the cost control of RV reducer.
关键词
RV减速器 /
加工误差 /
传动误差 /
轮齿接触分析
{{custom_keyword}} /
Key words
RV reducer /
manufacturing errors /
transmission errors /
tooth contact analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王田苗,陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50 (9) : 1-13.
WANG Tianmiao, TAO Yong, Research status and industrialization developement strategy of chinese industrial robot[J]. Journal of mechanical engineering, 2014, 50 (9) : 1-13.
[2] 何卫东,单丽君. RV减速器研究现状与展望[J]. 大连交通大学学报,2016,37(5):13-18.
HE Weidong, SHAN Lijun. Status and development of RV reduce[J]. Journal of DALIAN Jiaotong University, 2016,37(5):13-18.
[3] 李兵,杜俊伟,陈磊,等. 工业机器人RV减速器传动误差分析[J]. 西安交通大学学报,2017,51(10):1-6.
LI Bing, DU Junwei, CHEN Lei, etl. Transmission Error Analysis for Industrial Robot RV Reducer[J]. Journal of Xi'an Jiaotong University, ,2017,51(10):1-6.
[4] Han L S,Guo F. Global sensitivity analysis of transmission accuracy for RV-type cycloid-pin drive[J]. Journal of Mechanical Science and Technology. 2016, 30(3):1225-1231.
[5] 缪嘉成,李朝阳,陈兵奎. 结合Kriging与改进NSGA-Ⅱ的RV减速器优化[J]. 重庆大学学报,2021,44(02):65-78.
MIAO Jiacheng, LI Chaoyang, CHEN Bingkui. Optimization of an RV reducer by integrating Kriging with improved NSGA-Ⅱ[J]. Journal of Chongqing University, 2021,44(02):65-78.
[6] Shan L J, Lin Y T, He W D. Analysis of nonlinear dynamic accuracy on RV transmission system[J]. Advanced Materials Research. 2012, 510(4): 529-535.
[7] XU Lixin, CHEN Bingkui, LI Chao Yang. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers[J]. Mechanism and Machine Theory, 2019, 137(7): 432-458.
[8] 吴鑫辉,何卫东. 机器人用RV减速器传动精度测试与虚拟样机仿真[J]. 机械设计,2017, 34(7): 73-77.
WU Xin-hui,HE Wei-dong. Transmission accuracy test and virtual prototype simulation of the RV reducer used in the robot[J]. Journal of machine design, 2017, 34(7): 73-77.
[9] 刘华明,秦训鹏,黄津晶,等. RV减速器的虚拟样机仿真与传动精度的研究[J]. 机械传动, 2016, 40(5): 54-60.
LIU Huaming, QIN Xunpeng, HUANG Jinjin. Simulation of Virtual Prototype and Research of Transmission Accuracy for RV Reducer[J]. Journal of Mechanical Transmission, 2016, 40(5): 54-60.
[10] 佟小涛. 基于虚拟样机技术的RV减速器动态传动误差研究[D]. 杭州:浙江工业大学,2019.
TONG Xiaotao. Research on dynamic transmission error of RV reducer based on virtual prototype technology[D]. Hang Zhou: Zhejiang University of Technolgy, 2019.
[11] 朱晓慧. 基于ADAMS的典型多接触系统仿真效率提高方法的研究[D]. 南宁,广西大学,2016.
ZHU Xiaohui. Research on the methods of improving the simulation efficiency of typical multibody contact systems based on ADAMS[D]. Nan Ning: Guangxi Univerisity, 2016.
[12] Jochem giesbers. Contact mechanics in MSC ADAMS[D]. Enschede, University of Twente, 2012.
[13] F.L.Litvin, RH.Feng. Computerized design and generation of cycloidal gearings[J]. Mechanism and Machine Theory, 1996,31(7):891-911.
[14] 李轩. 有侧隙啮合摆线针轮行星传动接触特性分析及实验研究[D], 重庆,重庆大学,2017.
LI Xuan. Contact charateristics analysis and experimental inverstigation on cycloid-pin planetary drives with mesh clearance[D]. Chongqing: Chongqing Univeristy,2017.
[15] Ching-Hao HUANG, Shyi-Jeng TSAI, A study on loaded tooth contact analysis of a cycloid planetary gear reducer considering friction and bearing roller stiffness[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2017, 11(6): JAMDSM0077.
[16] 张也,李朝阳,黄健. 多因素综合作用的摆线针轮传动误差分析[J]. 重庆大学学报, 2020,43(12):1-12.
ZHANG Ye, LI Chaoyang, HUANG Jian. Transmission error analysis of cycloidal pinwheel based on multi-factor comprehensive effect[J]. Journal of Chongqing Univeristy, 2020,43(12):1-12.
[17] LI Xuan, CHEN Bing-kui,WANG Ya-wen, etl. Mesh stiffness calculation of cycloid-pin gear pair with tooth profile modification and eccentricity error[J]. Journal of Central South University, 2018, 25(7): 1717-1731.
[18] Achintya Haldar, Sankaran Mahadevan. Probability, Reliability and Statistical Methods in Engineering Design[M]. John Wiley & Sons, New York, NY, USA, 2001.
[19] 余治民, 刘子建, 艾彦迪等. 大型数控龙门导轨磨床几何误差建模与基于可靠性理论的精度分配[J]. 机械工程学报, 2013,49(7):142-151.
YU Zhimin, LIU Zijian, AI Yandi, etl. Geometric Error Model and Precision Distribution Based on Reliability Theory for Large CNC Gantry Guideway Grinder[J]. Journal of Mechanical Engineering, 2013,49(7):142-151.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}