基于模块化贝叶斯推理的随机非线性模型修正

王未寅1,王佐才1,2,辛宇1,3,丁雅杰1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 79-88.

PDF(1520 KB)
PDF(1520 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (2) : 79-88.
论文

基于模块化贝叶斯推理的随机非线性模型修正

  • 王未寅1,王佐才1,2,辛宇1,3,丁雅杰1
作者信息 +

Stochastic nonlinear model updating based on modular bayesian inference

  • WANG Weiyin1,WANG Zuocai1,2,XIN Yu1,3,DING Yajie1
Author information +
文章历史 +

摘要

为同时考虑多种不确定因素对非线性结构模型修正的影响,提出了一种基于模块化贝叶斯推理的随机非线性模型修正方法。为了描述具有时变特性的非线性动力响应,提取结构动力响应主分量的瞬时加速度幅值作为非线性指标,基于贝叶斯方法,将整个模型修正过程分为三个相互独立的模块:首先建立非线性模型的高斯过程替代模型记为模块一;同时,为考虑模型误差对非线性结构随机模型修正的影响,将设计变量作为输入,模型误差作为输出,建立关于模型误差的高斯过程替代模型,记为模块二;最后,结合贝叶斯推理方法,结合模块一和模块二中的高斯过程模型,利用过渡马尔可夫链蒙特卡罗(Transitional Markov Chain Monte Carlo, TMCMC)随机采样方法估计待修正参数后验概率密度函数,实现基于模块化贝叶斯推理的随机非线性模型修正研究。采用三跨连续梁桥数值算例来验证所提出的随机非线性模型修正方法的准确性,并对比了不同噪声水平、不同程度模型误差条件下的模型修正结果,研究结果表明,基于模块化贝叶斯推理的随机非线性模型修正方法能够有效地实现非线性结构的随机模型修正,并具有较好的鲁棒性。

Abstract

To simultaneously consider the effects of multiple uncertainties on nonlinear structural model updating, a stochastic nonlinear model updating method based on modular Bayesian inference is proposed. In this study, the instantaneous acceleration amplitude of the main component of the structural dynamic response is extracted as the nonlinear indicator. Based on the proposed approach, the nonlinear model updating is divided into three modules. Firstly, a Gaussian process alternative model of the nonlinear model is established as module 1; meanwhile, to consider the influence of the model uncertainties on nonlinear model updating, a Gaussian process model is further constructed in module 2, in this model, the design variables are assigned as input and the model error is designed as output. Finally, combing with the modules 1 and 2, the posterior probability density function of the nonlinear model parameter is estimated by using the Transitional Markov Chain Monte Carlo (TMCMC) Random sampling method. Numerical simulation on a three-span continuous girder bridge is used to verify the accuracy of the proposed stochastic nonlinear model updating method, and the updating results under different noise levels and different model uncertainties are investigated. The results show that the proposed method is effective for stochastic nonlinear model updating with a better robustness.

关键词

非线性结构 / 模块化贝叶斯 / 模型误差 / 测量误差 / 高斯过程模型

Key words

Nonlinear model updating / Modular Bayes / Model error / Measurement error / Gaussian process model

引用本文

导出引用
王未寅1,王佐才1,2,辛宇1,3,丁雅杰1. 基于模块化贝叶斯推理的随机非线性模型修正[J]. 振动与冲击, 2023, 42(2): 79-88
WANG Weiyin1,WANG Zuocai1,2,XIN Yu1,3,DING Yajie1. Stochastic nonlinear model updating based on modular bayesian inference[J]. Journal of Vibration and Shock, 2023, 42(2): 79-88

参考文献

[1]Beck J L, Au S K. Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation[J]. Journal of engineering mechanics, 2002, 128(4): 380-391.
[2]Lin K, Xu Y-L, Lu X, Guan Z, Li J. Time history analysis-based nonlinear finite element model updating for a long-span cable-stayed bridge. Structural Health Monitoring. October 2020. doi:10.1177/1475921720963868
[3]易伟建, 刘翔. 基于贝叶斯估计的结构固有频率不确定性分析[J]. 振动与冲击, 2010.
YI Weijian, LIU Xiang. Uncertainty analysis of structural natural frequencies based on Bayesian estimation[J]. Journal of Vibration and Shock, 2010.
[4]易伟建,吴高烈,徐丽.模态参数不确定性分析的贝叶斯方法研究[J].计算力学学报,2006(06):700-705.
YI Weijian, WU Gaolie, XU Li. A study on the uncertainty of model parameters by Bayesian method[J]. Chinese Journal of Computational Mechanics,2006(06):700-705.
[5]张建新. 基于贝叶斯方法的有限元模型修正研究[D].重庆大学,2014.
ZHANG Jianxin. Research on the Updating of Finite Element Model Based on Bayesian Method[D]. Chongqing university,2014.
[6]Lin, K, Xu, Y-L, Lu, X, Guan, Z, Li, J. Collapse prognosis of a long-span cable-stayed bridge based on shake table test and nonlinear model updating. Earthquake Engineering & Structural Dynamics,2021; 50: 455– 474. https://doi.org/10.1002/eqe.3341
[7]方圣恩, 陈杉. 结合近似贝叶斯计算和改进群体蒙特卡洛抽样的结构损伤识别[J]. 振动与冲击, 2020, 39(5):7.
FANG Sheng'en, CHEN Shan. Structural damage identification using ABC combined with improved PMC sampling[J]. Journal of Vibration and Shock, 2020, 39(5):7.
[8]丁雅杰, 王佐才, 辛宇, 戈壁, 袁子青. 基于贝叶斯理论的非线性结构模型修正及其动力可靠度分析[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.07.0556
DING Yajie, WANG Zuocai, XIN Yu, GE Bi, YUAN Ziqing. Bayesian based nonlinear model updating and dynamic reliability analysis[J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.07.0556
[9]Xin Y, Hao H, Li J, et al. Bayesian based nonlinear model updating using instantaneous characteristics of structural dynamic responses[J]. Engineering Structures, 2019, 183: 459-474.
[10]万华平,任伟新,黄天立.基于贝叶斯推理的随机模型修正方法[J].中国公路学报,2016,29(04):67-76+95.
WAN Huaping, REN Weixin, HUANG Tianli. Stochastic Model Updating Approach by Using Bayesian Inference[J].China Journal of Highway and Transport, 2016,29(04):67-76+95.
[11]刘纲,罗钧,秦阳,张建新.基于改进MCMC方法的有限元模型修正研究[J].工程力学,2016,33(06):138-145.
LIU Gang, LUO Jun, QIN Yang, ZHANG Jianxin. A Finite Element Model Updating Method Based On Improved Mcmc Method[J]. Engineering Mechanics,2016,33(06):138-145.
[12]蒋伟,刘纲.基于多链差分进化的贝叶斯有限元模型修正方法[J].工程力学,2019,36(06):101-108.
JIANG Wei, LIU Gang. Bayesian finite element model updating method based on multi-chain differential evolution[J]. Engineering Mechanics,2019,36(06):101-108.
[13]Song M, Renson L, Noël J P, et al. Bayesian model updating of nonlinear systems using nonlinear normal modes[J]. Structural Control and Health Monitoring, 2018, 25(12): e2258.
[14]Ching J, Chen Y C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of engineering mechanics, 2007, 133(7): 816-832.
[15]Kennedy M C, O'Hagan A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2001, 63(3): 425-464.
[16]Arendt P D, Apley D W, Chen W. Quantification of model uncertainty: Calibration, model discrepancy, and identifiability[J]. Journal of Mechanical Design ,2012, 134(10):100908.
[17]Wu X, Kozlowski T, Meidani H, et al. Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory[J]. Nuclear Engineering and Design, 2018, 335: 339-355.
[18]Wu X, Kozlowski T, Meidani H, et al. Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE[J]. Nuclear Engineering and Design, 2018, 335: 417-431.
[19] Bayarri M J, Berger J O, Liu F. Modularization in Bayesian analysis, with emphasis on analysis of computer models[J]. Bayesian Analysis, 2009, 4(1): 119-150.
[20] Wan H P, Ren W X. Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian process metamodel[J]. Journal of Structural Engineering, 2015, 141(6): 04014164.
[21]万华平,任伟新,王宁波.高斯过程模型的全局灵敏度分析的参数选择及采样方法[J].振动工程学报,2015,28(05):714-720.
WAN Huaping, REN Weixin, WANG Ningbo. A Gaussian process model based global sensitivity analysis approach for parameter selection and sampling methods[J]. Journal of Vibration Engineering, 2015,28(05):714-720.

PDF(1520 KB)

Accesses

Citation

Detail

段落导航
相关文章

/