基于信息融合及双连接注意力残差网络的轴承故障诊断

张洪亮1,余其源1,秦超群1,王锐2,张宇腾1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 114-123.

PDF(2748 KB)
PDF(2748 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 114-123.
论文

基于信息融合及双连接注意力残差网络的轴承故障诊断

  • 张洪亮1,余其源1,秦超群1,王锐2,张宇腾1
作者信息 +

Bearing fault diagnosis based on double-connected attention residual network and information fusion

  • ZHANG Hongliang1,YU Qiyuan1,QIN Chaoqun1,WANG Rui2,ZHANG Yuteng1
Author information +
文章历史 +

摘要

针对单一传感器获取特征信息不足、深层卷积神经网络提取的故障特征缺乏重要性区分的问题,提出一种传感器信息融合与双连接注意力残差网络相结合的轴承故障诊断方法。首先,对从不同位置采集的振动信号,采用传感器信息融合策略转换成多通道输入,以获取更全面的故障特征信息;其次,针对融合后的多通道输入,设计了一种双连接残差网络来增强模型对特征信息的提取,同时引入通道注意力机制模块,对输出的特征赋予不同权重,使模型提取到的特征更具有鉴别性,改善了识别准确率。将所提方法应用于复杂工况下的轴承数据集,实验表明,该方法在变工况和噪声环境干扰下,具有良好的故障分类精度。

Abstract

Aiming at problems of insufficient feature information obtained by a single sensor and lack of importance distinction of the fault features extracted by the deep convolutional neural network, a fault diagnosis method combining double-connected attention residual network with sensor information fusion was proposed. Firstly, aiming to obtain more comprehensive fault feature information, the vibration signals collected from different locations were converted into multi-channel inputs using a sensor information fusion strategy. Secondly, a double-connected residual network was designed for the fused input to enhance the capability of fault feature extraction, and the channel attention mechanism module was introduced to assign different weights to the output features, so that the features extracted by the model became more discriminative, thereby the fault diagnosis accuracy can be improved. The proposed method was applied to the bearing data set under complex operating conditions. Experimental results show that the proposed method has good classification accuracy under variable working conditions and noise interference.

关键词

信息融合 / 双连接残差网络 / 注意力机制 / 故障诊断

Key words

information fusion / double-connected residual network / attention mechanism / fault diagnosis

引用本文

导出引用
张洪亮1,余其源1,秦超群1,王锐2,张宇腾1. 基于信息融合及双连接注意力残差网络的轴承故障诊断[J]. 振动与冲击, 2023, 42(20): 114-123
ZHANG Hongliang1,YU Qiyuan1,QIN Chaoqun1,WANG Rui2,ZHANG Yuteng1 . Bearing fault diagnosis based on double-connected attention residual network and information fusion[J]. Journal of Vibration and Shock, 2023, 42(20): 114-123

参考文献

[1] LI Y B, ZOU L, JIANG L, et al. Fault Diagnosis of Rotating Machinery Based on Combination of Deep Belief Network and One-dimensional Convolutional Neural Network[J]. IEEE Access, 2019, 7: 165710-165723.
[2] WEN L, LI X Y, GAO L, et al. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5990-5998.
[3] ZHANG Y, XING K S, BAI R X, et al. An Enhanced Convolutional Neural Network for Bearing Fault Diagnosis Based on Time–frequency Image[J]. Measurement, 2020, 157: 107667.
[4] XUE F, ZHANG W M, XUE F, et al. A Novel Intelligent Fault Diagnosis Method of Rolling Bearing Based on Two-stream Feature Fusion Convolutional Neural Network[J]. Measurement, 2021, 176: 109226.
[5] ZHANG X, HUANG T, WU B, et al. Multi-model Ensemble Deep Learning Method for Intelligent Fault Diagnosis with High-dimensional Samples[J]. Frontiers of Mechanical Engineering, 2021, 16(2): 340-352.
[6] HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[7] YANG D G, KARIMI H R, SUN K K. Residual Wide-kernel Deep Convolutional Auto-encoder for Intelligent Rotating Machinery Fault Diagnosis with Limited Samples[J]. Neural Networks, 2021, 141: 133-144.
[8] 袁彩艳,孙洁娣,温江涛,等. 多域信息融合结合改进残差密集网络的轴承故障诊断[J]. 振动与冲击,2022,41(4):200-208+252.
YUAN Caiyan, SUN Jiedi WEN Jiangtao, et al. Bearing Fault Diagnosis Based on Information Fusion and Improved Residual Dense Networks[J]. Journal of Vibration and Shock, 2022, 41(4): 200-208+252.
[9] BAI R X, XU Q S, MENG Z, et al. Rolling Bearing Fault Diagnosis Based on Multi-channel Convolution Neural Network and Multi-scale Clipping Fusion Data Augmentation[J]. Measurement, 2021, 184: 109885.
[10] ZHANG Y L, HE L, CHENG G. MLPC-CNN: A Multi-sensor Vibration Signal Fault Diagnosis Method Under Less Computing Resources[J]. Measurement, 2022, 188: 110407.
[11] PENG B S, XIA H, LV X Z, et al. An Intelligent Fault Diagnosis Method for Rotating Machinery Based on Data Fusion and Deep Residual Neural Network[J]. Applied Intelligence, 2022, 52(3): 3051-3065.
[12] LIN M, CHEN Q, YAN S C. Network in Network[J]. arXiv preprint arXiv:1312.4400, 2013.
[13] HU J, SHEN L, SUN G. Squeeze-and-excitation Networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[14] LONG Y Y, ZHOU W N, LUO Y. A Fault Diagnosis Method Based on One-dimensional Data Enhancement and Convolutional Neural Network[J]. Measurement, 2021, 180: 109532.
[15] 丁雪,邓艾东,李晶,等. 基于多尺度和注意力机制的滚动轴承故障诊断[J]. 东南大学学报(自然科学版),2022,52(1):172-178.
DING Xue, DENG Aidong, LI Jing, et al. Fault Diagnosis of Rolling Bearing Based on Multi-scale and Attention Mechanism[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(1): 172-178.
[16] 童靳于,罗金,郑近德. 基于增强深度自编码网络的滚动轴承故障诊断方法[J]. 中国机械工程,2021,32(21):2617-2624.
TONG Jinyu, LUO Jin, ZHENG Jinde. Rolling Bearing Fault Diagnosis Method Based on Enhanced Deep Auto-encoder Network[J]. China Mechanical Engineering, 2021, 32(21): 2617-2624.

PDF(2748 KB)

405

Accesses

0

Citation

Detail

段落导航
相关文章

/