模糊熵是衡量时间序列复杂性的非线性动力学分析方法,也是提取齿轮箱非线性故障特征的有效工具。然而模糊熵只对单个时间序列进行复杂性测量,忽略了两个不同时间序列之间模式的相似性。为充分利用振动信号间的丰富信息,将能够有效衡量两个时间序列同步性、相似性和互预测性的交叉熵理论引入到行星齿轮箱故障诊断中。针对单一尺度的熵值不能完整反映序列间模式复杂性问题,通过复合粗粒化的方式对时间序列进行多尺度分析,提出了衡量两通道时间序列相似性与互预测性的复合多尺度交叉模糊熵方法。在此基础上,提出了一种基于复合多尺度交叉模糊熵和萤火虫优化支持向量机的行星齿轮箱故障诊断方法。最后,将所提的故障诊断方法应用于行星齿轮箱试验数据分析,并与现有方法进行了对比,结果表明所提方法能够有效提取故障特征,并且在故障类型诊断方面有更高的识别率。
Abstract
Fuzzy entropy is not only a nonlinear dynamic analysis method to measure the complexity of time series, but also an effective tool to extract the nonlinear fault features of gearbox. However, the fuzzy entropy only measures the complexity for a single time series and the coupling characteristics between two sequences are ignored. To fully utilize the rich information between vibration signals, the cross-entropy theory, which can effectively measure the synchronization, similarity and mutual prediction of two time series, is introduced into the planetary gearbox fault diagnosis. Aiming at the problem that the entropy value of a single scale can not fully reflect the pattern similarity between sequences, this paper makes a multi-scale analysis of time series by means of composite coarsening, and a composite multi-scale cross fuzzy entropy method to measure the similarity and mutual prediction of two channel time series is proposed. Based on that, a new fault diagnosis method based on composite multi-scale cross fuzzy entropy and firefly algorithm optimization support vector machine is proposed for planetary gearbox. Finally, the proposed fault diagnosis method is applied to the test data analysis of planetary gearbox by comparing with the existing methods. The analysis results indicate that the proposed method can effectively extract the nonlinear fault features of gearbox and has a higher recognition rate in fault type identification than the compared methods.
关键词
交叉模糊熵 /
多尺度模糊熵 /
复合多尺度交叉模糊熵 /
行星齿轮箱 /
故障诊断
{{custom_keyword}} /
Key words
fuzzy entropy /
multi-scale fuzzy entropy /
composite multi-scale cross fuzzy entropy (CMCFE) /
planetary gearbox /
fault diagnosis.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[ 1 ] YANG J Y, ZHANG Y Y, ZHU Y S. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2012-2024.
[ 2 ] YAN R Q, GAO R X. Approximate entropy as a diagnostic tool for machine health monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 824-839.
[ 3 ] LAKE D E, RICHMAN J S, GRIFFIN M P, et al. Sample entropy analysis of neonatal heart rate variability[J]. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2002, 283(3): 789-797.
[ 4 ] 金红梅. 近似熵对气候突变检测的适用性研究[D]. 兰州: 兰州大学, 2013.
JIN Hongmei. The applicability research of approximate entropy in abrupt climate change detection[D]. Lanzhou: Lanzhou University, 2013.
[ 5 ] PINCUS S, SINGER B H. Randomness and degrees of irregularity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(5): 2083-2088.
[ 6 ] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart & Circulatory Physiology, 2000, 278(6): 2039-2049.
[ 7 ] XIE H B, ZHENG Y P, GUO J Y, et al. Cross-fuzzy entropy: A new method to test pattern synchrony of bivariate Time Series[J]. Information Sciences, 2010, 180(9): 1715-1724.
[ 8 ] COSTA M, HEALEY J A. Multiscale entropy analysis of complex heart rate dynamics: discrimination of age and heart failure effects[C]// Computers in Cardiology. IEEE, 2003: 705-708.
[ 9 ] ZHANG L, XIONG G L, LIU H S, et al. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference[J]. Expert Systems with Applications, 2010, 37(8): 6077-6085.
[10] 郑近德, 程军圣, 杨宇. 基于多尺度熵的滚动轴承故障诊断方法[J]. 湖南大学学报(自然科学版), 2012, 39(5): 38-41.
ZHENG Jinde, CHENG Junsheng, YANG Yu. A rolling bearing fault diagnosis approach based on multiscale entropy[J]. Journal of Hunan University (Natural Sciences) , 2012, 39(5): 38-41.
[11] 郑近德, 程军圣, 胡思宇. 多尺度熵在转子故障诊断中的应用[J]. 振动、测试与诊断, 2013, 33(2): 294-297.
ZHENG Jinde, CHENG Junsheng, HU Siyu. Rotor fault diagnosis based on multiscale entropy [J]. Journal of Vibration Measurement & Diagnosis, 2013, 33(2): 294-297.
[12] YAN R, YANG Z, ZHANG T. Multiscale cross entropy: A novel algorithm for analyzing two time series[C]// 2009 Fifth International Conference on Natural Computation. IEEE, 2009: 411-413.
[13] ZHENG J D, PAN H Y, CHENG J S. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines[J]. Mechanical Systems and Signal Processing, 2017, 85: 746-759.
[14] NAMDEO A, SINGH D. Challenges in evolutionary algorithm to find optimal parameters of SVM: A Review[J]. Materials Today: Proceedings, 2021(3).
[15] 王晶. 非平稳时间序列的多尺度分析[D]. 北京: 北京交通大学, 2015.
WANG Jing. Multiscale analysis of nonstationary time series[D]. BEIJING: Beijing Jiaotong University, 2015.
[16] 郑近德, 潘海洋, 程军圣, 等. 基于复合多尺度模糊熵的滚动轴承故障诊断方法[J]. 振动与冲击, 2016, 35(8): 116-123.
ZHENG Jinde, PAN Haiyang, CHENG Junsheng, et al. Composite multi-scale fuzzy entropy based rolling bearing fault diagnosis method[J]. Vibration and Shock, 2016, 35(8): 116-123.
[17] 马彦追. 萤火虫算法的改进及其应用研究[D]. 广西: 广西民族大学, 2014.
MA Yanzhui. Improved and applied research of firefly algorithm[D]. Guangxi: Guangxi University for Nationalities, 2014.
[18] HOLLAND J H. Adaptation in natural and artificial system[M]. Michigan: The University of Michigan Press, 1975.
[19] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995: 1942-1948.
[20] YANG X S. Firefly algorithms for multimodal optimization[C]// International Symposium on Stochastic Algorithms. Springer, Berlin, Heidelberg, 2009: 169-178.
[21] 郑近德, 潘海洋, 张俊, 等. 基于多变量多尺度模糊熵的行星齿轮箱故障诊断[J]. 振动与冲击, 2019, 38(6): 187-193.
ZHENG Jinde, PAN Haiyang, ZHANG Jun, et al. Multivariate multiscale fuzzy entropy based planetary gearbox fault diagnosis[J]. Vibration and Shock, 2019, 38(6): 187-193.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}