驳船撞击作用下双柱式桥梁的动力行为分析

陈天黎1,吴昊1,方秦2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 158-171.

PDF(5788 KB)
PDF(5788 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 158-171.
论文

驳船撞击作用下双柱式桥梁的动力行为分析

  • 陈天黎1,吴昊1,方秦2
作者信息 +

Dynamic behaviors of double-column RC bridge under barge impact

  • CHEN Tianli1,WU Hao1,FANG Qin2
Author information +
文章历史 +

摘要

桥梁结构在其服役期内可能受到偶然性船舶撞击的威胁。针对双柱式桥梁在驳船撞击作用下的动态响应和损伤破坏,开展了下部结构缩比模型试验和数值仿真研究。首先,分别进行了1:5缩尺驳船船艏和刚性体侧向撞击双柱式桥墩模型试验,获取了撞击力时程、船艏压溃深度和桥墩的动力行为。其次,基于LS-DYNA有限元分析软件,开展试验的数值仿真,通过对比预测结果与试验数据,验证了采用的数值模拟方法、材料模型和参数的适用性。进一步,分别建立了精细化和简化的原型驳船-桥梁撞击有限元模型,对比验证了采用纤维梁单元表征桩的简化模型的可靠性,并对驳船-桥梁撞击过程,以及驳船质量、撞击速度和角度对桥梁动力行为的影响进行了讨论。结果表明,相同撞击能量下,撞击速度对驳船船艏的永久压溃深度影响更为显著;撞击角度对撞击持时和桥梁动力行为影响更大,增加了桥梁整体倒塌风险。本文工作可为双柱式桥梁抗驳船撞击评估与设计提供一定参考。

Abstract

During the service life, bridges are potentially subjected to collisions by vessels. To study the dynamic responses and damage patterns of the prototype double-column RC bridge under barge impact, the scaling model test of bridge substructure and numerical simulation were conducted. First, the lateral impact test of 1/5 scaled barge bow and rigid impactor on the double-column RC bridge pier (DCBP) specimens was carried out, and the impact force-time histories, crush depth of barge bow, as well as the dynamic behaviors of DCBP specimens were obtained. In addition, based on the finite element (FE) program LS-DYNA, the numerical simulation of the test was conducted. By comparing the FE analyses results with the experimental data, the applicability of the FE analyses approach, material models and corresponding parameters was validated. Then, the refined and simplified FE models of prototype barge-bridge collision were established, respectively. The reliability of simplified FE models using fiber beam element to characterize the pile was verified, and the impact process during barge-bridge collision, the effects of barge mass, impact velocity and impact angle on the dynamic behaviors of the prototype bridge were discussed. It derives that, under the identical impact energy, the impact velocity has a great influence on the permanent crush depth of barge bow; the impact angle has a great effect on the impact duration and the dynamic behaviors of the bridge, and amplifies the overall collapse risk of the bridge. This work can provide a reference for the impact-resistant evaluation and design of the prototype double-column RC bridge against barge impact.

关键词

驳船-桥梁撞击 / 双柱式桥梁 / 动态响应 / 数值模拟 / 倒塌

Key words

barge-bridge collision / double-column RC bridge / dynamic behaviors / numerical simulation / collapse

引用本文

导出引用
陈天黎1,吴昊1,方秦2. 驳船撞击作用下双柱式桥梁的动力行为分析[J]. 振动与冲击, 2023, 42(20): 158-171
CHEN Tianli1,WU Hao1,FANG Qin2. Dynamic behaviors of double-column RC bridge under barge impact[J]. Journal of Vibration and Shock, 2023, 42(20): 158-171

参考文献

[1] 刘占辉, 呼瑞杰, 姚昌荣, 等. 桥梁撞击问题2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(5): 235-246.
Liu Z H, Hu R J, Yao C R, et al. State-of-the-art review of bridge impact research in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 235-246.
[2] 刘占辉, 卢治谋, 张锐, 等. 桥梁撞击问题2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43: 242-251.
Liu Z H, Lu Z M, Zhang R, et al. State-of-the-art review of bridge impact research in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43: 242-251.
[3] Knott M A. Vessel collision design codes and experience in the United States[M]. Ship collision analysis, Routledge, 2017.
[4] AASHTO, 2009. Guide Specifications and Commentary for Vessel Collision Design of Highway Bridges [S].
[5] Goble G, Schulz J, Commander B. Lock and Dam #26 field test report for the Army Corps of Engineers [R], Bridge Diagnostics Inc., Boulder (CO), 1990.
[6] Consolazio G R, Cook R A, Lehr G B. Barge impact testing of the St. George Island Causeway Bridge, Phase I: feasibility study[R]. Gainesville, Florida: University of Florida, 2002.
[7] Consolazio G R, Cook R A, Biggs A E, et al. Barge impact testing of the St. George Island Causeway Bridge, Phase II: design of instrumentation systems[R]. Gainesville, Florida: University of Florida, 2003.
[8] Consolazio G R, Cook R A, Mcvay M C. Barge impact testing of the St. George Island Causeway Bridge-phase III: physical testing and data interpretation, structures[R]. Gainesville, Florida: University of Florida, 2006.
[9] Meir-Dornberg K E. Ship collisions, safety zones, and loading assumptions for structures in inland waterways[J]. VDI-Berichte, 1983, 496(1): 1-9.
[10] Kantrales G C, Consolazio G R, Wagner D, et al. Experimental and analytical study of high-level barge deformation for barge-bridge collision design[J]. Journal of Bridge Engineering, 2015, 21(2): 04015039.
[11] Getter D J, Kantrales G C, Consolazio G R, et al. Strain rate sensitive steel constitutive models for finite element analysis of vessel-structure impacts[J]. Marine Structures, 2015, 44: 171-202.
[12] 刘飞. 钢筋混凝土桥墩抗车辆撞击机理研究[D]. 湖南: 湖南大学, 2017.
Liu F. The mechanism research of reinforced concrete piers subjected to vehicle collisions[D]. Hunan: Hunan University, 2017.
[13] Wan Y L, Zhu L, Fang H, et al. Experimental testing and numerical simulations of ship impact on axially loaded reinforced concrete piers[J]. International Journal of Impact Engineering, 2019, 125: 246-262.
[14] Chen Z Y, Fang H, Zhu L, et al. Experimental tests and numerical simulations of circular reinforced concrete piers under ship impact[J]. Advances in Bridge Engineering, 2020, 1(1): 1-25.
[15] 王君杰, 陈传景, 宋彦臣, 等. 驳船斜撞刚性墙动力时程概率模型[J]. 振动与冲击, 2016, 35(15): 23-28.
Wang J J, Chen C J, Song Y C, et al. Probabilistic model for dynamic time history of a barge-rigid wall oblique collision[J]. Journal of Vibration and Shock, 2016, 35(15): 23-28.
[16] 宋彦臣, 王君杰, 尹海蛟, 等. 轮船-桥墩碰撞简化荷载模型[J]. 振动与冲击, 2019, 38(5): 60-70.
Song Y C, Wang J J, Yin J H, et al. Simplified impact load model for ship-bridge collisions[J]. Journal of Vibration and Shock, 2019, 38(5): 60-70.
[17] Kishi N, Mikami H, Matsuoka K G, et al. Impact behavior of shear-failure-type RC beams without shear rebar[J]. International Journal of Impact Engineering, 2002, 27(9): 955-968.
[18] Bambach M R, Jama H, Zhao X L, et al. Hollow and concrete filled steel hollow sections under transverse impact loads[J]. Engineering Structures, 2008, 30(10): 2859-2870.
[19] Fujikake K, Li B, Soeun S, Impact response of reinforced concrete beam and its analytical evaluation[J]. Journal of Structural Engineering, 2009, 135(8): 938-950.
[20] Sha Y Y, Hao H. Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers[J]. Engineering Structures, 2013, 46: 593-605.
[21] Sha Y Y, Hao H. Laboratory tests and numerical simulations of CFRP strengthened RC pier subjected to barge impact load[J]. International Journal of Structural Stability and Dynamics, 2015, 15(2): 1450037.
[22] Demartino C, Wu J G, Xiao Y. Response of shear-deficient reinforced circular RC columns under lateral impact loading[J]. International Journal of Impact Engineering, 2017, 109: 196-213.
[23] Xu J J, Demartino C, Shan B, et al. Experimental investigation on performance of cantilever CFRP-wrapped circular RC columns under lateral low-velocity impact[J]. Composite Structures, 2020, 242: 112143.
[24] LS-DYNA 971. Livermore software technology corporation. Livermore (C.A., U.S. A). 2015.
[25] Yuan P. Modeling, simulation and analysis of multi-barge flotillas impacting bridge piers[D]. Kentucky: University of Kentucky, 2005.
[26] Whitney M W, Harik I E. Analysis and design of bridges susceptible to barge impact[R]. Kentucky Transportation Center, Kentucky: University of Kentucky, 1997.
[27] Chen T L, Wu H, Fang Q. Impact force models for bridge under barge collisions[J]. Ocean Engineering, 2022, 259: 111856.
[28] Consolazio G R, Getter D J, Kantrales G C. Validation and implementation of bridge design specifications for barge impact loading[R]. Gainesville, Florida: University of Florida, 2014.
[29] Abedini M, Zhang C W. Performance assessment of concrete and steel material models in LS-DYNA for enhanced numerical simulation, a state of the art review[J]. Archives of Computational Methods in Engineering, 2021, 28: 2921-2942.
[30] Sha Y Y, Hao H. Nonlinear finite element analysis of barge collision with a single bridge pier[J]. Engineering Structures, 2012, 41: 63-76.
[31] Gholipour G, Zhang C W, Mousavi A A. Nonlinear numerical analysis and progressive damage assessment of a cable-stayed bridge pier subjected to ship collision[J]. Marine Structures, 2020, 69: 102662.
[32] Fan W, Yuan W C, Chen B S. Steel fender limitations and improvements for bridge protection in ship collisions[J]. Journal of Bridge Engineering, 2015, 20(12): 06015004.
[33] Shen D J, Sun W B, Fan W, et al. Behavior and analysis of simply supported bridges under vessel side collisions: implications from collapse of the Taiyangbu Bridge[J]. Journal of Bridge Engineering, 2022, 27(9): 04022076.

PDF(5788 KB)

Accesses

Citation

Detail

段落导航
相关文章

/