高温后钢纤维橡胶自密实混凝土动态冲击性能

庄金平1,2,任凯2,许可2,陈剑星3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 19-29.

PDF(2656 KB)
PDF(2656 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 19-29.
论文

高温后钢纤维橡胶自密实混凝土动态冲击性能

  • 庄金平1,2,任凯2,许可2,陈剑星3
作者信息 +

Dynamic impact performance of steel fiber rubber self-compacting concrete after high temperature

  • ZHUANG Jinping1,2,REN Kai2,XU Ke2,CHEN jianxing3
Author information +
文章历史 +

摘要

为探究高温后钢纤维橡胶自密实混凝土(steel fiber rubber self-compacting concrete ,SFRSCC)的动态力学性能,采用直径为80mm分离式-霍普金森压杆装置(SHPB)对其进行动态冲击试验,在确定钢纤维最优掺量基础上重点探讨了橡胶掺量对高温后SFRSCC破碎形态、动态抗压强度、冲击韧性以及动态应力增长因子等影响规律。试验结果表明:与常温下相同,随着橡胶掺量的增加,高温冷却后SFRSCC的动态抗压强度呈逐渐降低的趋势;与常温下相反,高温冷却后SFRSCC抵抗冲击破碎能力、冲击韧性、动态应力增长因子均随着橡胶掺量的增加呈逐渐降低的趋势。对比试验得到的动态应力增长因子与CEB-FIP建议公式计算值的差异,提出了高温后SFRSCC的动态增长因子的修正公式,修正公式的计算值与试验结果和其他文献的试验结果吻合较好,可为进一步分析探讨高温后SFRSCC动力特性提供一定参考。

Abstract

In order to explore the dynamic mechanical properties of steel fiber reinforced rubber self-compacting concrete (SFRSCC) after high temperature, the dynamic impact test of SFRSCC was carried out by using 80 mm diameter split Hopkinson pressure bar (SHPB). On the basis of determining the optimal content of steel fiber, the influence of rubber content on the fracture morphology, dynamic compressive strength, impact toughness and dynamic stress growth factor of SFRSCC after high temperature was mainly discussed. The test results show that, as the rubber content increases, the dynamic compressive strength of SFRSCC decreases gradually after high temperature cooling. On the contrary, the impact fracture resistance, impact toughness and dynamic increase factor of SFRSCC decreased with the increase of rubber content after high temperature cooling. The difference between the calculated values of the dynamic stress growth factor obtained by the test and the CEB-FIP recommended formula is compared, and the modified formula of the dynamic increase factor of SFRSCC after high temperature is proposed. The calculated values of the modified formula are in good agreement with the experimental results and the experimental results of other literatures, which can provide some reference for further analysis and discussion of the dynamic characteristics of SFRSCC after high temperature.

关键词

高温后 / 钢纤维橡胶自密实混凝土 / 动态冲击 / 橡胶掺量 / 冲击韧性 / 动态增长因子

Key words

After high temperature / Steel fiber rubber self-compacting concrete;Dynamic impact / Rubber content / Impact toughness / Dynamic increase factor.

引用本文

导出引用
庄金平1,2,任凯2,许可2,陈剑星3. 高温后钢纤维橡胶自密实混凝土动态冲击性能[J]. 振动与冲击, 2023, 42(20): 19-29
ZHUANG Jinping1,2,REN Kai2,XU Ke2,CHEN jianxing3. Dynamic impact performance of steel fiber rubber self-compacting concrete after high temperature[J]. Journal of Vibration and Shock, 2023, 42(20): 19-29

参考文献

[1]. Chen M, Zhong H, Chen L, et al. Engineering properties and sustainability assessment of recycled fibre reinforced rubberised cementitious composite [J]. Journal of Cleaner Production, 2020, 278:123996.
[2]. HAN Q H, YANG G, XU J, et al. Acoustic emission data ana-lyses based on crumb rubber concrete beam bending tests [J]. Engineering Fracture Mechanics, 2019 ,210: 189-202.
[3]. 田雷,邱流潮,胡筱.自密实橡胶混凝土性能研究综述[J].硅酸盐通报,2021,40(01):146-162.
Tian Lei, Qiu Liu-chao, Hu Xiao. Summary of Research on Self-Compacting Rubberized Concrete Performance[J]. Bulletin of the chinese ceramic society 2021,40 (01): 146-162.
[4]. CHEN C,CHEN X D,ZHANG J H.Experimental study on flexural fatigue behavior of self-compacting concrete with waste tire rubber [J]. Mechanics of Advanced Materials and Structures, 2019: 1-12.
[5]. TOPÇU I B, AVCULAR N. Collision behaviours of rubberized concrete [J]. Cement & Concrete Research, 1997, 27(12): 1893–1898.
[6]. ASLANI F, MA G W, YIM WAN D L,et al. Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete [J]. Journal of Cleaner Production,2018,172: 1835-1847.
[7]. ASLANI F, MA G W, YIM WAN D L, et al. Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules [J].Journal of Cleaner Production, 2018, 182: 553-566.
[8]. 马昆林,龙广成,谢友均,等.橡胶颗粒对自密实混凝土性能的影响[J].硅酸盐学报.2014,42( 8):966-973.
Ma Kun-lin, Long Guang-cheng, Xie Youjun, et al. Effect of rubber particles on the self-compacting concrete [J]. Journal of the Chinese Ceramic Society, 2014, 42 (8): 966-973.
[9]. NAITO C, STATES J, JACKSON C, et al. Assessment of crumb rubber concrete for flexural structural members [J].Journal of Materials in Civil Engineering,2014,26(10) : 04014075.
[10]. TIAN L, QIU L C, LI J J, et al.Experimental study of waste tire rubber,wood-plastic particles and shale ceramsite on the performance of self-compacting concrete [J]. Journal of Renewable Materials,2020,8(2):154-170.
[11]. 杨 恩. 橡胶粒径及掺量对自密实混凝土性能影响的试验研究[D]. 辽宁工程技术大学,2019.
Yang-en. Experimental Study on the Effect of Rubber Particle Size and Content on the Performance of Self-compacting Concrete [D]. Liaoning University of Engineering and Technology, 2019.
[12]. 赵秋红,董硕,朱涵.钢纤维-橡胶/混凝土抗剪性能试验[J].复合材料学报,2020,37(12):3201-3213.
Zhao Qiu-hong, Dong Shuo, Zhu Han. Experimental study on shear behavior of steel fiber-rubber/concrete [J]. Acta Materiae Compositae Sinica,2020,37 (12):3201-3213.
[13]. 赵秋红,董硕,朱涵.钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J].复合材料学报,2021,38(07):2359-2369.
Zhao Qiu-hong, Dong Shuo, Zhu Han. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression [J]. Acta Materiae Compositae Sinica, 2021, 38( 07 ) :2359–2369.
[14]. 刘锋,张文杰,何东明.橡胶粉-纤维改性高强混凝土的高温性能[J].建筑材料学报,2011,14(01):124-131.
Liu Feng, Zhang Wen-jie, He Dong-ming. High Temperature Performance of High Strength Concrete Modified by Rubber Powder and Fiber [J]. Journal of Building Materials, 2011,14 (01):124–131.
[15]. 李旭东. 高温前后钢纤维改性橡胶混凝土力学性能试验研究[D].广东工业大学,2013.
Li Xu-dong. Experimental A Dissertation Submitted to Guangdong University of Technology forthe Degree of Master of Engineering Science [D]. Guangdong University of Technology, 2013.
[16]. Guo YZ, Zhang JZ, Chen GM, et al. Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fiber, subjected to elevated temperatures [J]. Journal of Cleaner Production, 2014, 72(6):193-203.
[17]. Guo YC, Zhang J H, Chen G, et al. Fracture behaviors of a new steel fiber reinforced recycled aggregate concrete with crumb rubber [J]. Construction and Building Materials, 2014, 53(feb.28):32–39.
[18]. 谢志红,谢建和,黄培彦.高温损伤对高强橡胶钢纤维再生混凝土抗压和抗弯性能的影响[J].中国公路学报,2016,29(03):17-24.
Xie Zhi-hong, Xie Jian-he, Huang Pei-yan. Effects of High Temperature Damage on Compressive and Flexural Behavior of High Strength Recycled Aggregate Concrete with Steel Fiber and Crumb Rubber [J]. China Journal of Highway and Transport, 2016,29 (03): 17-24.
[19]. Phan L T, Carino N J. Code provisions for high strength concrete strength-temperature relationship at elevated temperature[J]. Materials and Structures,2003, (36): 91-98.
[20]. Kalifa P, Menneteau F D, Quenard D. Spalling and pore pressure in HPC at high temperatures [J]. Cement and Concrete Research, 2000, 30 (12): 1915-1927.
[21]. Ouz Düenci, Haktanir T , Altun F . Experimental research for the effect of high temperature on the mechanical properties of steel fiber-reinforced concrete [J]. China Building Industry Press, 2015, 75:82-88.
[22]. 中华人民共和国住房和城乡建设部. JGJ/T283-2012. 自密实性混凝土应用技术规程[s]. 中国建筑工业出版社. 2012-08-01.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. JGJ / T283-2012.Self-compacting concrete application technical regulations [s]. China Building Industry Press.2012-08-01.
[23]. 中华人民共和国住房和城乡建设部.JGJ55-2011. 普通混凝土配合比设计规程[s]. 中国建筑工业出版社. 2011-12-01.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. JGJ55 - 2011. Specification for mix design of ordinary concrete [s]. China Construction Industry Press. 2011-12 - 01.
[24]. LI N, LONG G C, MA C, et al. Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: a comprehensive study [J]. Journal of Cleaner Production,2019,236: 117707.
[25]. HILAL N N. Hardened properties of self-compacting concrete with different crumb rubber size and content [J].International Journal of Sustainable Built Environment, 2017, 6(1): 191-206.
[26]. 夏开文,王帅,徐颖,等.深部岩石动力学实验研究进展[J] .岩石力学与工程学报, 2021,40(03): 448-475.
Xia Kai-wen, Wang Shuai, Xu Ying, etc. Advances in experimental studies for deep rock dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2021,40 (03):448-475.
[27]. H. Umehara, D.Hamada, H.Yamamuro. Development and usage of self-compacting concrete in precast field [J]. Proc of 1st RILEM Int Symp on self-compacting concrete, Stockholm, Sweden. Paris: RILEM, 1999: 705–717.
[28]. Sarva S, Nemat-Nasser S. Dynamic Compressive Strength of Silicon Carbide Under Uniaxial Compression [J]. Materials Science and Engineering, 2001, A317: 140-144.
[29]. 陈荣,卢芳云,林玉亮.分离式 Hopkinson压杆实验技术研究进展[J].力学进展,2009,39(5):576–587.
Chen Rong, Lu Fang-yun, Lin Yu-liang. A critical review of split hopkinson pressure bar technique [J]. Advances in Mechanics, 2009, 39(5): 576-587.
[30]. Zheng W Z, Li H Y, Wang Y. Compressive stress-strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures [J] Construction and Building Materials, 2012, 35: 931-940.
[31]. ABDELALEEM B H, ISMAIL M K, HASSAN A AA. The combined effect of crumb rubber and synthetic fibers on impact resistance of self- consolidating concrete[J]. Construction and Building Materials, 2018, 162: 816-829.
[32]. 龙广成,李宁,薛逸骅.冲击荷载作用下掺橡胶颗粒自密实混凝土的力学性能[J].硅酸盐学报,2016,44( 8) : 1081-1090.
Long Guang-cheng, Li Ning, Xue Yih-ua. Mechanical Properties of Self-Compacting Concrete Incorporating Rubber Particles under Impact Load [J]. Journal of the Chinese Ceramic Society, 2016,44 (8): 1081-1090.
[33]. 郭永昌,刘锋,陈贵炫.橡胶混凝土的冲击压缩试验研究[J].建筑材料学报,2012,15(01):139-144.
Guo Yong-chang, Liu Feng, Chen Gui-xuan. Experimental Investigation on Impact Resistance of Rubberized Concrete [J]. Journal of Building Materials, 2012, 15 (01): 139-144.
[34]. Committee A. ASTM C1018 Standard test method for flexural toughness and first-crack strength of fiber reinforced concrete (using beam with third-point loading):ASTM-C1018-1997 [S] 1997.
[35]. 闻洋,刘培培.橡胶混凝土抗冲击性能研究[J]. 硅酸盐通报, 2018, 37(03): 792-799.
Wen yang, Liu Pei-pei. Impact Resistance Research on Rubberized Concrete [J]. Bulletin of the chinese ceramic society, 2018,37 (03): 792-799.
[36]. 张海波,管学茂,勾密峰.温度对橡胶混凝土外观及抗压强度的影响[J].建筑材料学报,2013,16(05):858-862.
Zhang Hai-bo, Guan Xue-mao, Gou Mi-feng. Influence of Temperature on Compressive [J]. Journal of Building Materials, 2013, 16 (05): 858-862.
[37]. 岳健广,夏月飞,方华.钢纤维混凝土断裂破坏机理及受拉损伤本构试验研究[J].土木工程学报,2021,54(02):93-106.
Yue Jian-guang, Xia Yue-fei, Fang Hua. Experimental study on fracture mechanism and tension damage constitutive relationship of steel fiber reinforced concrete [J]. China civil engineering journal, 2021,54 (02): 93-106.
[38]. Li L J, Tu G R, Lan C, et al. Mechanical characterization of waste-rubber-modified recycled-aggregate concrete[J]. Journal of Cleaner Production, 2016, 124(jun.15):325-338.
[39]. 王道荣, 胡时胜. 骨料对混凝土材料冲击压缩行为的影响[J].实验力学, 2002(1):23-27.
Wang Dao-rong, Hu Shi-sheng. Influence of Aggregate on the Compression Properties of Concrete under Impact [J]. Journal of Experimental Mechanics, 2002 (1):23-27.
[40]. Feng L, Chen G, Li L, et al. Study of impact performance of rubber reinforced concrete [J]. Construction and Building Materials, 2012, 36:604-616.
[41]. CEB, FIP. FIB model code 2010 [S]. 2011.
[42]. 郝逸飞,郝洪.螺旋钢纤维混凝土抗冲击试验分析[J].天津大学学报(自然科学与工程技术版),2016,49(04):355-360.
Hao Yi-fei, Hao Hong. Test Analysis on Spiral Steel Fiber Reinforced Concrete Subjected to Impact Loads [J]. Journal of Tianjin University (Science and Technology), 2016,49 (04): 355-360.
[43]. 金宝. 高温后混凝土材料的冲击力学性能试验研究[D].湖南大学,2015.
Jin bao. Experimental study on dynamic behavior of concrete after expose to high temperature under impact load [D]. Hunan University, 2015.
[44]. Li Z, Xu J, Bai E. Static and dynamic mechanical properties of concrete after high temperature exposure [J]. Materials Science & Engineering A, 2012, 544 (May 15): 27-32.

PDF(2656 KB)

Accesses

Citation

Detail

段落导航
相关文章

/