Π型叠合梁斜拉桥建造全周期静风失稳模式及机理研究

薛晓锋,吕盛昌,曹体锁,高广中

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 204-213.

PDF(4317 KB)
PDF(4317 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 204-213.
论文

Π型叠合梁斜拉桥建造全周期静风失稳模式及机理研究

  • 薛晓锋,吕盛昌,曹体锁,高广中
作者信息 +

A full-cycle aerostatic instability model and the mechanism of Π Composite girder cable-stayed bridges

  • XUE Xiaofeng,LShengchang,CAO Tisuo,GAO Guangzhong
Author information +
文章历史 +

摘要

为了研究抵抗扭转刚度斜拉桥建造全周期的静风稳定特征,采用风洞试验获得施工、运营阶段±10°风攻角区间主梁静风三分力系数,结合有限元数值模拟方法,采用内外双层迭代算法同时计入斜拉桥几何非线性和风荷载非线性,对主跨跨径为480m的Π型钢混叠合梁斜拉桥进行了建造全周期非线性静风响应分析。追踪该桥各典型施工阶段主梁变位和拉索索力随风速的变化,以揭示低抗扭刚度斜拉桥建造运营全过程中的静风失稳模式及失稳机理。分析结果表明:随施工阶段发展,静风失稳模式多次变化;各工况下的静风失稳均是三向变位的复杂耦合行为,本桥扭转和竖向变位交替占主导地位;最大单悬臂阶段为各施工阶段中最不利的一个工况,其失稳风速仅为72m/s且结构响应较大。扭转为主导的失稳是由于拉索系统的应力降低而引起的结构破坏,而竖向变位为主的失稳是由结构较大变位引起的整体刚度的丧失引起。静风失稳的内在机理是结构在风载下的附加风攻角反作用于风荷载使升力和升力矩迅速变化,同时结构的非线性变形导致拉索系统应力降低和结构刚度降低使结构破坏。

Abstract

In order to study the static wind stability characteristics of the cable-stayed bridge low torsional stiffness in the whole construction cycle, the wind tunnel test was used to obtain the static wind three-component force coefficient of the main girder in the range of ±10° wind attack angle during the construction and operation stages. The layer iterative algorithm takes into account both the geometric nonlinearity and wind load nonlinearity of the cable-stayed bridge, and the full-cycle nonlinear static wind response analysis of the Π-section steel composite beam cable-stayed bridge with a main span of 480m is carried out. The changes of the main beam displacement and the cable force with the wind speed in each typical construction stage of the bridge were tracked to reveal the static wind instability mode and instability mechanism during the construction and operation of the low torsional stiffness cable-stayed bridge. The analysis results show that: with the development of the construction stage, the static wind instability mode changes many times; the static wind instability under each working condition is a complex coupling behavior of three-way displacement, and the torsion and vertical displacement of the bridge are alternately dominant. ; The largest single cantilever stage is the most unfavorable working condition in each construction stage, and its instability wind speed is only 72m/s and the structural response is large. Torsional-dominated instability is caused by structural failure due to stress reduction in the stay-cable system, while vertical-deflection-dominated instability is caused by loss of overall stiffness due to larger deflections of the structure. The internal mechanism of static wind instability is that the additional wind attack angle of the structure under wind load reacts to the wind load, causing the lift force and lift moment to change rapidly. At the same time, the nonlinear deformation of the structure leads to the decrease of the stress of the cable system and the decrease of the structural stiffness, resulting in structural damage.

关键词

桥梁工程 / 斜拉桥 / 静风稳定 / 施工过程 / 失稳模式 / 失稳机理

Key words

bridge engineering / cable-stayed bridge / static wind stability / process of construction / mode of instability / mechanism of instability

引用本文

导出引用
薛晓锋,吕盛昌,曹体锁,高广中. Π型叠合梁斜拉桥建造全周期静风失稳模式及机理研究[J]. 振动与冲击, 2023, 42(20): 204-213
XUE Xiaofeng,L Shengchang,CAO Tisuo,GAO Guangzhong. A full-cycle aerostatic instability model and the mechanism of Π Composite girder cable-stayed bridges[J]. Journal of Vibration and Shock, 2023, 42(20): 204-213

参考文献

[1] HIRAI A, OKAUCHI I, ITO M, et al. Studies on the critical wind velocity for suspension bridges; proceedings of the Proc, Int Research Seminar on Wind Effects on Buildings and Structures, F, 1967 [C]. University of Toronto Press Ontario, Canada.
[2] XIANG H F, GE Y J. Aerodynamic challenges in span length of suspension bridges [J]. Frontiers of Architecture and Civil Engineering in China, 2007, 1(2): 153-162.
[3] HU C, ZHOU Z, JIANG B. Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge [J]. Wind and Structures, 2019, 28(4): 255-270.
[4] 程进, 肖汝诚, 项海帆. 大跨径悬索桥非线性静风稳定性全过程分析 [J]. 同济大学学报:自然科学版, 2000, 28(6): 717-720.
CHENG Jin, XIAO Rucheng, XIANG Haifan. Full range nonlinear analysis for long-span Suspension Bridge[J]. Journal of Tongji University (Natural Science), 2000, 28(6): 717-720.
[5] 方明山, 项海帆, 肖汝诚. 大跨径缆索承重桥梁非线性空气静力稳定理论 [J]. 土木工程学报, 2000, 33(2): 73-79.
FANG Mingshan, XIANG Haifan, XIAO Rucheng. Nonlinear aerostatic stability thoery of large-span cable-stayed bridges [J]. China Civil Engineering Journal, 2000, 33(2): 73-79.
[6] 郝宪武, 舒鹏, 郝键铭. 大跨度非对称悬索桥的静风稳定性研究 [J]. 重庆交通大学学报:自然科学版, 2020,39(12): 53-59.
HAO Xianwu, SHU Peng, HAO Jianming. Static wind stability of long-Span asymmetric suspension bridge [J]. Journal of Chongqing Jiaotong University(Natural Science), 2020,39(12): 53-59.
[7] 胡朋, 颜鸿仁, 韩艳, 等. 山区峡谷非均匀风场下大跨度斜拉桥静风稳定性分析 [J]. 中国公路学报, 2019, 32(10): 158-168.
HU Peng, YAN Hongren, HAN Yan, et al. Aerostatic stability of long-span cable-stayed bridge under inhomogeneous wind Fields induced by mountain-gorge terrain[J]. China Journal of Highway and Transport, 2019, 32(10): 158-168.
[8] 李加武, 方成, 侯利明, 等. 大跨径桥梁静风稳定参数的敏感性分析 [J]. 振动与冲击, 2014, 33(4): 124-130.
LI Jiawu, FANG Cheng, HOU Liming, et al. Sensitivity analysis for aerostatic stability parameter of a long-span bridge [J]. Journal of Vibration and Shock, 2014, 33(4): 124-130.
[9] SU C, LUO X, YUN T. Aerostatic reliability analysis of long-span bridges [J]. Journal of Bridge Engineering, 2010, 15(3): 260-268.
[10] 张新军, 张丹. 缆索风荷载对悬索桥风效应的影响研究 [J]. 公路, 2005, (12): 1-4.
ZHANG Xinjun, ZHANG Dan. Research on influence of cable wind load on wind action of suspension bridges [J]. Highway, 2005, (12): 1-4
[11] ZHANG Z, GE Y, YANG Y. Torsional stiffness degradation and aerostatic divergence of suspension bridge decks [J]. Journal of Fluids and Structures, 2013, 40: 269-283.
[12] ZHANG X J, YAO M. Numerical investigation on the wind stability of super long-span partially earth-anchored cable-stayed bridges [J]. Wind & structures, 2015, 21(4): 407-424.
[13] 管青海, 李加武, 刘健新. 抗风缆对大跨人行悬索桥非线性静风失稳模式的影响 [J]. 公路交通科技, 2022, 39(2): 103-110.
GUAN Qinghai, LI Jiawu, LIU Jianxin. Influence of wind-resistant cables on nonlinear areostatic instability mode of long-span pedestrian suspension bridges [J]. Journal of Highway and Transportation Research and Development, 2022, 39(2): 103-110.
[14] 张文明, 王溧, 刘钊. 基于应变能的三塔悬索桥静风失稳形态分析 [J]. 桥梁建设, 2013, 43(5): 62-67.
ZHANG Wenming, WANG Li, LIU Zhao. Analysis of aerostatic instability mode of a three-tower suspension bridge based on strain energy [J]. Bridge Construction, 2013, 43(5): 62-67.
[15] 管青海, 张凯, 李加武, 等. 大跨人行悬索桥非线性静风失稳发展过程分析 [J]. 桥梁建设, 2018, 48(1): 76-81.
GUAN Qinghai, ZHANG Kai, LI Jiawu, et al. Analysis of development process of nonlinear aerostatic instability of a long-span pedestrian suspension bridges [J]. Bridge Construction, 2018, 48(1): 76-81.
[16] 张志田, 张伟峰. 悬索桥在紊流风场中的静风扭转发散机制 [J]. 土木工程学报, 2013, 46(7): 74-80.
ZHANG Zhitian ZHANG Weifeng. Mechanism of the aerostatic torsional divergence of suspension bridges in turbulent flows [J]. China Civil Engineering Journal, 2013, 46(7): 74-80.
[17] 罗建辉, 陈政清, 刘光栋. 大跨度缆索承重桥梁非线性静风扭转失稳机理的研究 [J]. 工程力学, 2007, (增刊2): 145-154.
LUO Jianhui, CHEN Zhengqing, LIU Guangdong. Research on instability mechanism of long-span cable-stayed bridges due to nonlinear aerostatic torsional [J]. Engineering Mechanics, 2007, (Suppl.2): 145-154.
[18] 李永乐, 欧阳韦, 郝超, 等. 大跨度悬索桥静风失稳形态及机理研究 [J]. 空气动力学学报, 2009, 27(6): 701-706.
LI Yongle, OUYANG Wei, HAO Chao, et al. Study on shape and mechanism of aerostatic stability for long span suspension bridges [J]. Acta Aerodynamica Sinica, 2009, 27(6): 701-706.
[19] 管青海, 周燕, 李加武, 等. 主跨420 m人行悬索桥非线性静风稳定影响参数分析 [J]. 振动与冲击, 2018, 37(9): 155-160.
GUAN Qinghai, ZHOU Yan, LI Jiawu, et al. Effects of parameters on nonlinear aerostatic stability of a pedestrian suspension bridge with main span of 420 m [J]. Journal of Vibration and Shock, 2018, 37(9): 155-160.
[20] 何晗欣, 刘健新. 抗风缆对大跨悬索桥动力特性的影响 [J]. 公路交通科技, 2010,27(7): 83-87.
He HX, Liu JX. Effect of wind cable on dynamic property of long-span suspension bridge [J]. Journal of Highway and Transportation Research and Development, 2010,27(7): 83-87..
[21] 刘黎阳, 张志田. 低扭转刚度悬索桥扭转发散特征及抗风对策 [J]. 工程力学, 2020, 37(11): 146-55.
Liu LY, Zhang ZT. Aerostatic divergence properties of suspension bridges with low torsional stiffness and anti-wind countermeasures [J]. Engineering Mechanics, 2020, 37(11): 146-55.
[22] 魏志刚, 葛耀君, 杨詠昕. 抗风缆对大跨悬索桥颤振控制的有效性研究 [J]. 同济大学学报:自然科学版, 2008, 36(12):1628-1632.
Wei ZG, Ge YJ, Yang YX. effectiveness of storm ropes for long suspension bridge’s flutter control[J].Journal of Tongji University (Natural Science), 2008, 36(12):1628-1632.
[23] 向思宇, 胡习兵. 抗风缆布置形式对人行悬索桥静风稳定性影响分析 [J]. 公路工程, 2019, 44(6): 89-93.
Xiang SY, Hu XB. Influence of wind resistant cable layout on static wind stability of pedestrian suspension bridge [J]. Highway Engineering, 2019, 44(6): 89-93.
[24] 陈政清. 桥梁风工程 [M]. 桥梁风工程, 2005.
Chen ZQ. Bridge wind engineering [M]. Bridge Wind Engineering, 2005.
[25] 郭辉, 孙华卿. 三塔悬索桥施工过程静风稳定性分析 [J]. 市政技术, 2011, 29(5): 50-52.
Guo H, Sun HQ. Aerostatic stability analysis of three-tower suspension bridge during construction[J]. Journal of Municipal Technology ,2011, 29(5): 50-52.
[26] 肖汝诚, 贾丽君, 程进, 等. 静风荷载引起的超大跨度桥梁关键问题研究 [J]. 公路交通科技, 2001, 18(6): 34-38.
Xiao RC, Jia LJ, Cheng Jin, et al. Research on the key points caused by aerostatic load in super-long bridges [J]. Journal of Highway and Transportation Research and Development, 2001, 18(6): 34-38.
[27] 经柏林, 谢华鸾. 斜拉桥拉索研究综述 [J]. 中国市政工程, 2003, (6): 19-20.
Jing BL, Xie HL. A study on cable of cable-stayed bridge [J]. China Municipal Engineering, 2003, (6): 19-20

PDF(4317 KB)

385

Accesses

0

Citation

Detail

段落导航
相关文章

/