基于ANCF的旋转超弹性厚壁REF振动特性分析

范博1,王忠民2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 245-252.

PDF(1457 KB)
PDF(1457 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 245-252.
论文

基于ANCF的旋转超弹性厚壁REF振动特性分析

  • 范博1,王忠民2,3
作者信息 +

Vibration characteristics analysis for a hyperelastic thick REF model based on ANCF

  • FAN Bo1, WANG Zhongmin2,3
Author information +
文章历史 +

摘要

为了探究子午线轮胎面内振动特性,本文建立了旋转超弹性厚壁REF模型。并在具有随动坐标系的绝对节点坐标法(absolute nodal coordinate formulation,ANCF)框架下,提出了平面内旋转环扇单元,对旋转超弹性厚壁REF模型进行离散。考虑到非线性本构关系和旋转运动中的广义惯性力,建立了该模型的非线性运动微分方程以及线性化运动微分方程。通过与现有文献中的实验结果进行对比,验证了上述模型的有效性,并分析了弹性基参数、环体厚度和旋转角速度对子午线轮胎固有特性的影响规律。

Abstract

In order to investigate the in-plane vibration characteristics of radial tire, a rotating hyperelastic thick wall ring on the elastic foundation (REF) model is established in this paper. In the framework of the absolute nodal coordinate formulation(ANCF) with comoving coordinate system, an in-plane rotating ANCF annular-sector element is proposed to discretize the rotating hyperelastic thick wall REF model. Considering the nonlinear constitutive relation and the generalized inertial force in rotating motion, the nonlinear differential equation of motion and linearized equation of this model are established. By comparing with the experimental results in the existing literature, the validity of the above model is verified, and the influence of elastic base parameters, ring thickness and rotation angular velocity on the vibration frequency of radial tire is analyzed.

关键词

绝对节点坐标法 / 旋转环扇单元 / 厚壁REF模型 / 超弹性材料

Key words

Absolute Nodal Coordinate Formulation / Rotating ANCF Annular-sector Element / Thick REF Model / Hyperelastic material

引用本文

导出引用
范博1,王忠民2,3. 基于ANCF的旋转超弹性厚壁REF振动特性分析[J]. 振动与冲击, 2023, 42(20): 245-252
FAN Bo1, WANG Zhongmin2,3. Vibration characteristics analysis for a hyperelastic thick REF model based on ANCF[J]. Journal of Vibration and Shock, 2023, 42(20): 245-252

参考文献

[1] COOLEY C G, PARKER R G. Vibration of high-speed rotating rings coupled to space-fixed stiffnesses[J]. Journal of Sound and Vibration, 2014, 333(12): 2631-2648.
[2] LIU Z, GAO Q. Development and parameter identification of the flexible beam on elastic continuous tire model for a heavy-loaded radial tire[J]. Journal of Vibration and Control, 2018, 24(22): 5233-5248.
[3] WANG Q, ZHAO Y, LIN F, et al. Research on vibration characteristics and its key influencing factors of new mechanical elastic wheel. Journal of Vibroengineering, 2016, 18(8): 5337-5352.
[4] S. GONG. A study of in-plane dynamics of tires[D]. Netherlands, Delft University of Technology, 1993.
[5] WEI Y T, NASDALA L, ROTHERT H. Analysis of forced transient response for rotating tires using rotating flexibility ring models[J]. Journal of Sound and Vibration, 2009, 320(1-2): 145-162.
[6] TIELKING J T. Plane vibration characteristics of a pneumatic tire model[D]. Michigan, The University of Michigan, 1965.
[7] WU W, PARKER R G. Vibration of rings on a general elastic foundation[J]. Journal of Sound and Vibration, 2006, 295(1-2): 194-213.
[8] SUGIYAMA H , SUDA Y. Non-linear elastic ring tyre model using the absolute nodal coordinate formulation[J]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2009, 223(3): 211-219.
[9] VU T D, DUHAMEL D. ABBADI Z, et al. A nonlinear circular ring model with rotating effects for tire vibrations[J]. Journal of Sound and Vibration, 2016, 388(3): 245-271.
[10] LU T, TSOUVALAS A, METRIKINE A V. The in-plane free vibration of an elastically supported thin ring rotating at high speeds revisited[J]. Journal of Sound and Vibration, 2017, 402(8):203-218.
[11] 岳晓峰, 解成能, 高学亮, 等. 一种优化的柔性环动力学轮胎模型的研究与应用[J]. 振动与冲击, 2021, 40(8): 92-97.
YUE X F, XIE C N, GAO X L, et al. Research and application of an optimized flexible ring rolling tire model[J]. Journal of Vibration and Shock (in Chinese), 2021, 40(8): 92-97.
[12] LU T, TSOUVALAS A, METRIKINE A V. A high-order model for in-plane vibrations of rotating rings on elastic foundation[J]. Journal of Sound and Vibration, 2019, 455 (9): 118-135.
[13] LU T, TSOUVALAS A, METRIKINE A V. The steady-state response of a rotating ring subjected to a stationary load[J]. International Journal of Solids and Structures, 2020, 202(10):319-337.
[14] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies[M]. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago,1996.
[15] 魏永. 基于绝对节点坐标法的高速旋转圆锯片动态特性分析[D]. 陕西: 西安理工大学, 2018.
[16] CHEN X Z, ZHANG D G, LI L. Dynamic analysis of rotating curved beams by using absolute nodal coordinate formulation based on radial point interpolation method. Journal of Sound and Vibration, 2019, 441(2): 63-83.
[17] FAN B, WANG Z M, WANG Q B. Nonlinear forced transient response of rotating ring on the elastic foundation by using adaptive ANCF curved beam element[J]. Applied Mathematical Modelling, 2022, 108: 748-769.
[18] MOONEY M J. A theory of large elastic deformation[J]. Journal of Applied Physics, 1940 ,11 (6) :582-592.
[19] YEOH O H. Some forms of the strain energy for rubber[J]. Rubber Chemistry and Technology, 1993, 66(5): 754-771.
[20] ORZECHOWSKI G, FRACZEK J. Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF[J]. Nonlinear Dynamics, 2015, 82(1-2): 451-464.
[21] 王资燊. 基于绝对节点坐标法的硅橡胶手指变形分析[D]. 陕西: 西安理工大学, 2020.
WANG Z S. Deformation analysis of silicone rubber finger based on on absolute nodal coordinate formulation[D]. Shaan Xi: Xi’an University of Technology, 2020.
[22] 陶羽玲,赵春花,鲍康文.基于绝对节点坐标法的气动软体驱动器建模[J]. 农业装备与车辆工程, 2021, 59(09): 69-73+79.
TAO Y L, ZHAO C H, BAO K W, Modeling of Pneumatic Soft Drive Based on Absolute Nodal Coordinate Method[J], Agricultural Equipment & Vehicle Engineering (in Chinese), 2021, 59(09): 69-73+79.
[23] LIU J Y, QU L Z. A higher-order plate element formulation for dynamic analysis of hyperelastic silicone plate[J]. Journal of Mechanics, 2019, 35(6): 795-808.

PDF(1457 KB)

416

Accesses

0

Citation

Detail

段落导航
相关文章

/