考虑齿轮啮合的某舰炮随动系统动力学特性分析研究

陈宇1, 2,谢明亮1,景旭文1,邹晓峰2,刘金锋1,闫德俊2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 293-299.

PDF(1552 KB)
PDF(1552 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 293-299.
论文

考虑齿轮啮合的某舰炮随动系统动力学特性分析研究

  • 陈宇1, 2,谢明亮1,景旭文1,邹晓峰2,刘金锋1,闫德俊2
作者信息 +

Dynamics simulation of a naval gun servo system considering gear meshing

  • CHEN Yu1,2, XIE Mingliang1, JING Xuwen1, ZOU Xiaofeng2, LIU Jinfeng1, YAN Dejun2
Author information +
文章历史 +

摘要

为研究齿轮间接触碰撞及啮合间隙等对舰炮随动系统性能及振动特性的影响,建立了考虑齿轮啮合、随动系统等多非线性因素的舰炮机电液耦合动力学模型。其中,基于改进的Lankarani-Nikravesh接触算法及齿轮间时变啮合刚度计算方法,建立了考虑时变啮合刚度的齿轮传动多体接触动力学模型。数值计算结果表明:随动系统中齿轮啮合会使舰炮的振动频率变高,降低随动系统的控制性能,但比例积分微分(proportional-integral-derivative,PID)控制器可在一定程度上抑制齿轮间接触非线性的不利影响。研究可为舰炮炮控性能的预测和优化提高提供参考。

Abstract

To study the influence of contact collision and meshing clearance between gears on the performance and vibration characteristics of the naval gun servo system, a mechanical-electrical-hydraulic coupling dynamics model considering multiple nonlinear factors (such as gear meshing, servo system, etc.) of the naval gun was established. Therein, a multi-body contact dynamic model of gear transmission was established based on the modified Lankarani-Nikravesh contact algorithm and calculation method of time-varying meshing stiffness between gears. The numerical results show that the gear meshing in the servo system will increase the vibration frequency of the gun and reduce the control performance of the servo system, but the proportional-integral-derivative(PID) controller can suppress the adverse effects of nonlinearity of contact between gears to a certain extent. The research can provide a reference for the prediction and optimization of the performance of naval gun servo systems.

关键词

舰炮 / 随动系统 / 齿轮啮合间隙 / 接触 / 动力学仿真

Key words

naval gun / servo system / gear mesh clearance / contact / dynamic simulation

引用本文

导出引用
陈宇1, 2,谢明亮1,景旭文1,邹晓峰2,刘金锋1,闫德俊2. 考虑齿轮啮合的某舰炮随动系统动力学特性分析研究[J]. 振动与冲击, 2023, 42(20): 293-299
CHEN Yu1,2, XIE Mingliang1, JING Xuwen1, ZOU Xiaofeng2, LIU Jinfeng1, YAN Dejun2. Dynamics simulation of a naval gun servo system considering gear meshing[J]. Journal of Vibration and Shock, 2023, 42(20): 293-299

参考文献

[1] 曾庆旺, 张保山. 舰炮伺服随动系统平稳性控制方法[J].舰船科学技术, 2019, 41(23): 206-210.
ZENG Qingwang, ZHANG Baoshan. A method on naval gun servo system stability control[J]. Ship Science and Technology, 2019, 41(23): 206-210. (in Chinese)
[2] 牛瑞利, 王国虎. 非圆齿轮系统在火炮系统上的应用[J]. 火力与指挥控制, 2020, 45(02): 102-104+109.
NIU Ruili,WANG Guohu. Application of non-circular gear system in artillery system[J]. Fire Control & Command Control, 2020, 45(02): 102-104+109. (in Chinese)
[3] 张金忠, 李晓伟, 童睆, 等. 某型步兵战车行进间射击高低机动态接触非线性计算[J]. 弹道学报, 2019, 31(03): 58-61.
ZHANG Jinzhong, LI Xiaowei, TONG Huan, et al. Dynamic contact non-linear calculation of elevating mechanism for infantry combat vehicle firing on the move[J]. Journal of Ballistics, 2019, 31(03): 58-61. (in Chinese)
[4] Gkimisis L, Vasileiou G, Sakaridis E, et al. A fast, non-implicit SDOF model for spur gear dynamics[J]. Mechanism and Machine Theory. 2021, 160: 104279.
[5] Han Xinghui, Zhang Xuancheng, Zheng Fangyan, et al. Mathematic model and tooth contact analysis of a new spiral non-circular bevel gear[J]. Journal of Central South University, 2022, 29(1): 157–172.
[6] Zhang Xu, Zhong Jiaxin, Li Wei, et al. Nonlinear dynamic analysis of high-speed gear pair with wear fault and tooth contact temperature for a wind turbine gearbox[J]. Mechanism and Machine Theory, 2022, 173: 104840.
[7] 刁诗靖, 赵洋, 彭京徽. 舰炮整体振动分析及结构参数优化研究[J]. 火炮发射与控制学报, 2021, 42(01): 7-14.
DIAO Shijing, ZHAO Yang, PENG Jinghui. Overall vibration analysis and structural parameter optimization of the naval gun system [J]. Journal of Gun Launch and Control, 2021, 42(01): 7-14. (in Chinese)
[8] 刘国强, 陈维义, 陈华东,等. 舰炮身管的模态分析与多目标优化[J]. 国防科技大学学报, 2020, 42(02): 150-155.
LIU Guoqiang, CHEN Weiyi, CHEN Huadong, et al. Modal analysis and multi-objective optimization of the naval gun barrel [J]. Journal of National University of Defense Technology, 2020, 42(02): 150-155. (in Chinese)
[9] 富威, 吴琼, 崔运山, 等. 舰炮身管的抗振性能优化研究[J]. 兵工学报, 2019, 40(02): 234-242.
FU Wei, WU Qiang, CUI Yunshan, et al. Optimization of anti-vibration performance of naval gun barrel [J]. Acta Armamentarii, 2019, 40(02): 234-242. (in Chinese)
[10] 姜尚,田福庆,梁伟阁.基于全局反步滑模控制的舰炮随动系统齿隙补偿方法[J].海军工程大学学报,2018,30(05):92-98.
JIANG Shang, TIAN Fuqing, LIANG Weige. Backlash compensation method in naval gun servo system based on global back-stepping sliding mode control [J]. Journal of Naval University of Engineering,2018,30(05):92-98. (in Chinese)
[11] 杨国来, 葛建立, 孙全兆, 等. 火炮振动与控制的发展现状及应用前景[J]. 振动.测试与诊断, 2021, 41(06): 1043-1051+1232.
YANG Guolai, GE Jianli, SUN Quanzhao, et al. Development and application prospects of gun vibration and control[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(6): 1043-1051. (in Chinese)
[12] Lin Tong, Qian Linfang, Yin Qiang, et al. Dynamic modeling and parameter identification of a gun saddle ring[J]. Defence Technology, 2020, 16(02): 325-333.
[13] 陈宇, 杨国来, 付羽翀, 等. 高速机动条件下坦克行进间火炮非线性振动动力学研究[J]. 兵工学报, 2019, 40(07): 1339-1348.
CHEN Yu, YANG Guolai, FU Yuchong, et al. Dynamic simulation on nonlinear vibration of marching tank gun under high mobility conditions[J]. Acta Armamentarii, 2019, 40(07): 1339-1348. (in Chinese)
[14] Ma Hui, Song Rongze, Pang Xu, et al. Time-varying mesh stiffness calculation of cracked spur gears[J]. Engineering Failure Analysis. 2014, 44: 179-194.
[15] Sainsot P, Velex P, Duverger O. Contribution of gear body to tooth deflections - a new bidimensional analytical formula [J]. Journal of Mechanical Design. 2004, 126(4): 748–752.
[16] Chen Yu, Yang Guolai, Zhou Honggen. et al. Influence of projectile-barrel coupling on gun vibration of the moving tank under the influence of a stabilizer [J]. Arabian Journal for Science and Engineering, 2021, 46 (8), 7635–7648.

PDF(1552 KB)

Accesses

Citation

Detail

段落导航
相关文章

/