弹性桨-轴系统建模与计算方法研究

李家盛1,2,3,张正艺1,2,华宏星4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 30-39.

PDF(1804 KB)
PDF(1804 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 30-39.
论文

弹性桨-轴系统建模与计算方法研究

  • 李家盛1,2,3,张正艺1,2,华宏星4
作者信息 +

Investigation on the modelling and computational algorithm for fluid-structure interactions of propeller-shafting systems

  • LI Jiasheng1,2,3,ZHANG Zhengyi1,2,HUA Hongxing4
Author information +
文章历史 +

摘要

弹性桨-轴与流体产生的双向流固耦合效应,显著改变了推进系统振动性能。现有研究分别针对桨叶和转轴弹性采用分离模型进行,即:流体-弹性桨与流体-刚体桨-弹性轴模型。而在实际工况中,转轴由于发生振动,使得弹性桨入流条件与忽略轴系振动时的差异很大。另一方面,现有分离模型在预报时,是基于流体在桨叶振动平衡位置处界面力学关系开展的,未能真实反映流体在振动桨叶物理表面行为特征,难以满足桨-轴系统振动特性准确预报的现实需求。本文拟针对流体-弹性桨-轴复杂系统双向流固耦合问题,基于精确的振动桨叶表面流体界面力学关系,建立弹性桨-轴双向流固耦合一体化模型并发展一套高效高精度稳定数值算法。结果表明船舶研究者需建立流体-弹性桨-轴一体化模型,以重新评估附加质量/阻尼及轴承处激励力。建立的模型与算法和得到的结果可为低速水下航行器声振性能设计和评价提供理论和技术支持。

Abstract

The interaction between the propeller-shafting system and the fluid around the propeller may significantly affect the dynamic performance of the propulsion system. The traditional methods for investigating this phenomenon are based on the uncoupled fluid-propeller (elastic vibration)/fluid-propeller (six degrees rigid body oscillation)-shafting models, which consider the elasticities of the blades and shaft separately. Since the propeller is attached to the elastic shafting system, the elastic behavior of the shafting system may affect the incoming flows. In addition, previous uncoupled analyses pertaining to this problem were based on the interface conditions of the fluid and the structure, which are imposed on the undeformed blade surface. It is difficult to capture the dynamic behavior of the fluid on the physical surface of the vibrating blades. The vibration characteristics of the propeller-shafting system cannot be accurately predicted by this method. Based on the boundary condition on the fluid-structure interface of the vibrating blades, numerical models are established for two-way strongly coupled fluid-structure interaction analysis of the propeller-shafting system. A stable algorithm of high efficiency and accuracy is developed to study the unsteady hydrodynamic performance of the fluid-propeller-shafting coupled system. It is found that the designers need to consider the elastic coupling effect between the shaft and the propeller for re-evaluation of additional mass/damping and excitation forces at bearings. The developed methods and the results may provide effective theoretical reference and technical support for the design and evaluation of the vibration characteristics of low-speed underwater vehicles.

关键词

流固耦合/水弹性 / 振动 / 螺旋桨-轴系统 / 有限元法 / 面元法/边界元法

Key words

fluid-structure interaction/hydroelasticity / vibration / propeller-shaft system / finite element method / panel method/ boundary element method

引用本文

导出引用
李家盛1,2,3,张正艺1,2,华宏星4. 弹性桨-轴系统建模与计算方法研究[J]. 振动与冲击, 2023, 42(20): 30-39
LI Jiasheng1,2,3,ZHANG Zhengyi1,2,HUA Hongxing4. Investigation on the modelling and computational algorithm for fluid-structure interactions of propeller-shafting systems[J]. Journal of Vibration and Shock, 2023, 42(20): 30-39

参考文献

[1] Young Y L. Fluid-structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids and Structures, 2008, 24(6): 799–818.
[2] Young Y L. Time-dependent hydroelastic analysis of cavitating propulsors[J]. Journal of Fluids and Structures, 2007, 23(2): 269–295.
[3] Lee S. Forced response analysis of a multi-bearing system on a flexible foundation (an application to ship hull-shaft vibration)[D]. Charlottesville , VA:University of Virginia, 1992.
[4] Zou D, Zhang J, Ta N,Rao Z. The hydroelastic analysis of marine propellers with consideration of the effect of the shaft[J]. Ocean Engineering, 2017, 131: 95–106.
[5] Tsushima H, Sevik M. Dynamic response of marine propellers to nonuniform flowfields[J]. Journal of Hydronautics, 1973, 7(2): 71–77.
[6] Kuo J, Vorus W. Propeller blade dynamic stress [C]//Tenth Ship Technology and Research (STAR) Symposium. Norfolk, England, 1985.
[7] Lin H J, Tsai J F. Analysis of underwater free vibrations of a composite propeller blade[J]. Journal of Reinforced Plastics & Composites, 2008, 27(5): 447–458.
[8] Suo Z, Guo R. Hydroelasticity of rotating bodies—theory and application[J]. Marine Structures, 1996, 9(6): 631–646.
[9] Lee H, Song M, Suh J, Chang B. Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(3): 562–577.
[10] Gaschler M, Abdel-Maksoud M. Computation of hydrodynamic mass and damping coefficients for a cavitating marine propeller flow using a panel method[J]. Journal of Fluids and Structures, 2014, 49: 574–593.
[11] Mao Y, Young Y L. Influence of skew on the added mass and damping characteristics of marine propellers[J]. Ocean Engineering, 2016, 121: 437–452.
[12] Yari E, Ghassemi H. Boundary element method applied to added mass coefficient calculation of the skewed marine propellers[J]. Polish Maritime Research, 2016, 23(2): 25–31.
[13] Li J, Qu Y, Chen Y, Hua H. Investigation of added mass and damping coefficients of underwater rotating propeller using a frequency-domain panel method[J]. Journal of Sound and Vibration, 2018, 432: 602–620.
[14] Li J, Qu Y, Hua H. Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEM-FEM algorithm[J]. Ocean Engineering, 2017, 146: 178–191.
[15] Li J, Rao Z, Su J, Qu Y, Hua H. A numerical method for predicting the hydroelastic response of marine propellers[J]. Applied Ocean Research, 2018, 74: 188–204.
[16] 李家盛,张振果,田锦,华宏星.桨叶弹性对螺旋桨轴承力影响及计算方法研究[J].振动与冲击, 2020, 39(18): 1-10.
Li Jia-sheng, Zhang Zhen-guo, Tian Jin, Hua Hong-xing. Mechanism of fluid-structure interaction and algorithm for calculating the bearing force of elastic propellers [J]. Journal of Vibration and Shock, 2020, 39(18): 1-10. (in Chinese)
[17] Li J, Qu Y, Chen Y, Hua H, Wu J. Dynamic responses of elastic marine propellers in non-uniform flows[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2022, 236(3):741-755.
[18] Li J, Qu Y, Chen Y, Hua H, Wu J. BEM-FEM coupling for the hydroelastic analysis of propeller-shafting systems in non-uniform flows[J]. Ocean Engineering, 2022, 247:110424.
[19] Hong Y, He X D, Wang R G, Li Y B, Zhang J Z, Zhang H M, Gao X. Dynamic responses of composite marine propeller in spatially wake[J]. Polymers & Polymer Composites, 2011, 19 (4): 405–412.
[20] He X D, Hong Y, Wang R G. Hydroelastic optimisation of a composite marine propeller in a non-uniform wake[J]. Ocean Engineering, 2012, 39: 14–23.
[21] Martio J, Sánchez-Caja A, Siikonen T. Evaluation of Propeller Virtual Mass and Damping Coefficients by URANS- Method [C]//Fourth International Symposium on Marine Propulsors. Austin, Texas, USA, 2015.
[22] Martio J, Sánchez-Caja A, Siikonen T. Open and ducted propeller virtual mass and damping coefficients by URANS-method in straight and oblique flow[J]. Ocean Engineering, 2017, 130: 92–102.
[23] Neugebauer J, Abdel-maksoud M, Braun M. Fluid-structure interaction of propellers[J]. IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering, 2008, 8:191-204.
[24] Maljaars P J, Kaminski M L. Hydro-elastic analysis of flexible propellers : an overview[C]//Fourth International Symposium on Marine Propulsors. Austin, Texas, USA, 2015.
[25] Morino L, Kuo CC. Subsonic potential aerodynamics for complex configurations: a general theory[J]. AIAA Journal, 1974, 12(2): 191-197.
[26] Kerwin J E , Lee C S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory[J]. SNAME Transactions, 1978, 86:218–253.
[27] Greeley D S, Kerwin J E. Numerical methods for propeller design and analysis in steady flow[J]. SNAME Transactions, 1982, 90: 415-453.
[28] Hoshino T. Experimental data for unsteady panel calculations and comparisons(Seiun-Maru HSP)[C]//Proceedings of the 22nd ITTC propulsion committee propeller RANS/Panel method workshop proceedings. Grenoble, France, 1998.

PDF(1804 KB)

520

Accesses

0

Citation

Detail

段落导航
相关文章

/