单钢板混凝土组合板冲击响应的数值模拟及计算方法

赵唯以,庞庆宏

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 309-318.

PDF(2471 KB)
PDF(2471 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 309-318.
论文

单钢板混凝土组合板冲击响应的数值模拟及计算方法

  • 赵唯以,庞庆宏
作者信息 +

Numerical simulation and a calculation approach for the impact response of half-sc slabs

  • ZHAO Weiyi, PANG Qinghong
Author information +
文章历史 +

摘要

采用LS-DYNA建立了冲击作用下单钢板混凝土组合板(Half-SC板)的有限元模型,根据现有试验结果验证了模型的准确性,并进一步分析了冲击物质量、冲击速度和钢板厚度对Half-SC板位移响应的影响规律。在此基础上,推导了Half-SC板的抗力和刚度计算式,提出了Half-SC板的抗力函数,并建立了计算Half-SC板位移响应的等效单自由度模型。研究结果表明:Half-SC板在冲击作用下的破坏过程可分为弹性受力阶段,混凝土冲切开裂阶段,水平钢筋断裂阶段;冲击速度对Half-SC板位移响应的影响最大,冲击物质量次之,钢板厚度的影响最小;所提出的等效单自由度模型能够很好地预测Half-SC板的位移时程。

Abstract

A finite element model of half steel plate-concrete composite slabs (Half-SC slabs) under impact action was established using LS-DYNA. The accuracy of the model was verified based on the available test results. The effects of the impactor mass, the impact velocity, and the steel plate thickness on the displacement response of Half-SC slabs were further analyzed. On this basis, the resistance and stiffness equations of the Half-SC slabs were derived. The resistance function of the Half-SC slabs was proposed. Thus, an equivalent single-degree-of-freedom model for calculating the displacement response of the Half-SC slabs was established. The results show that the damage process of Half-SC slabs under impact can be divided into three stages such as the elastic stage, the concrete cracking stage, and the horizontal reinforcement fracture stage. The impact velocity has the greatest influence on the displacement response of the Half-SC slabs, followed by the impactor mass and the steel plate thickness. The proposed equivalent single degree of freedom model can accurately predict the displacement time histories of Half-SC slabs.

关键词

单钢板混凝土组合板 / 位移响应 / 数值模拟 / 参数分析 / 等效单自由度模型

Key words

half steel plate-concrete composite slabs / displacement response / numerical simulation / parametric analysis / equivalent single-degree-of-freedom model

引用本文

导出引用
赵唯以,庞庆宏. 单钢板混凝土组合板冲击响应的数值模拟及计算方法[J]. 振动与冲击, 2023, 42(20): 309-318
ZHAO Weiyi, PANG Qinghong. Numerical simulation and a calculation approach for the impact response of half-sc slabs[J]. Journal of Vibration and Shock, 2023, 42(20): 309-318

参考文献

[1] Liew J Y R, Yan J B, Huang Z Y. Steel-concrete-steel Sandwich Composite Structures - Recent Innovations[J]. Journal of Constructional Steel Research, 2017, 130: 202-221.
[2] Varma A H, Malushte S R, Sener K C et al. Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments[J]. Nuclear Engineering and Design, 2014, 269: 240-249.
[3] Walter T A, Wolde-Tinsae A M. Turbine missile perforation of reinforced concrete[J]. Journal of Structural Engineering, 1984, 110(10): 2439-2455.
[4] Barr P. Guidelines for the design and assessment of concrete structures subjected to impact[M].Safety and Reliability Directorate, 1990.
[5] Tsubota H, Kasai Y, Koshika N et al. Quantitative studies on impact resistance of reinforced concrete panels with steel liners under impact loading. Part 1: Scaled model impact tests[C]. //Proceedings of the 12th International Conference on Structural Mechanics in Reactor Technology (SMiRT 12), Stuttgart, Germany, 1993.
[6] Mizuno J, Koshika N, Sawamoto Y et al. Investigation on Impact Resistance of Steel Plate Reinforced Concrete Barriers Against Aircraft Impact Part 1: Test Program and Results[C]. //Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China, 2005.
[7] Hashimoto J, Takiguchi K, Nishimura K et al. Experimental study on behavior of RC panels covered with steel plates subjected to missile impact[C]. //Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18),2005.
[8] Grisaro H, Dancygier A N. Assessment of the perforation limit of a composite RC barrier with a rear steel liner to impact of a non-deforming projectile[J]. International Journal of Impact Engineering, 2014, 64(2): 122-136.
[9] Bruhl J C, Varma A H, Johnson W H. Design of composite SC walls to preventperforation from missile impact[J]. International Journal of Impact Engineering,2015,75(1): 75-87.
[10] ANSI/AISC N690s1-15, Specification for Safety-Related Steel Structures for Nuclear Facilities[S].
[11] 窦旭强. 落锤冲击作用下双钢板混凝土组合墙的动力响应研究[D]. 北京: 北京航空航天大学, 2018.
Dou Xuqiang. Research of Double Steel Plate Concrete Composite Wall Dynamic Response under Drop Hammer Impact[D]. Beijing:Beihang University,2018.
[12] 赵唯以,陈沛涵.基于机器学习的单钢板混凝土组合板冲击响应预测及优化[J].振动与冲击,2022.(已录用)等刊出再修改
Zhao Weiyi, Chen Peihan. Impact response prediction and optimization of half steel-concrete composite slabs based on machine learning[J]. Explosion and Shock Waves,2022.
[13] 赵唯以,郭全全.低速冲击下双钢板混凝土组合墙的力学性能研究[J].土木工程学报,2018,51(11):88-94.
Zhao Weiyi, Guo Quanquan. Study on behavior of double-skin steel-concrete composite walls subjected to low-velocity impact[J]. China Civil Engineering Journal,2018,51(11):88-94.
[14] Jones  N.  Structural  Impact  [M].  Cambridge:  Cambridge University Press, 1989.
[15] ISO 179-2: 1997 Plastics-determination of charpy impact  properties-part 2: instrumented impact test [S]. Geneva: ISO, 1997.
[16] Bruhl J C, Varma A H, Kim J M. Static resistance function for steel-plate composite (SC) walls subject to impactive loading[J]. Nuclear Engineering and Design, 2015,295: 843-859.
[17] Sohel K M A, Liew J Y R. Behavior of steel–concrete–steel sandwich slabs subject to impact load[J]. Journal of Constructional Steel Research, 2014, 100: 163-175.
[18] Liew J Y R, Sohel K M A, Koh C G. Impact tests on steel–concrete–steel sandwich beams with lightweight concrete core[J]. Engineering Structures, 2009, 31(9): 2045-2059.
[19] Fujikake K, Li B, Soeun S. Impact Response of Reinforced Concrete Beam and Its Analytical Evaluation[J]. Journal of Structural Engineering, 2009, 135(8): 938-950.
[20] 赵唯以,高泽鹏,王琳,陈沛涵.集中荷载作用下四边简支双钢板混凝土组合板的力学性能研究[J].工程力学,2022,39(03):158-170+192.
ZHAO Wei-yi, GAO Ze-peng, WANG Lin,et al.Mechanical Performance of Two-way Simply Supported Steel-plate Composite Slabs Under Concentrated Load[J]. Engineering Mechanics,2022,39(03):158-170+192.
[21] Guo Q, Zhao W. Displacement response analysis of steel-concrete  composite  panels  subjected  to  impact  loadings[J].  International  Journal  of  Impact  Engineering,  2019,131: 272 − 281.
[22] GB/T 51340−2018, 核电站钢板混凝土结构技术标准[S].北京: 中国计划出版社, 2018.
GB/T  51340−2018,  Technical  standard  for  steel  plateconcrete structures of nuclear power plants [S]. Beijing:China Plan Press, 2018.
[23] JEAG  4618−2005,  Technical  guidelines  for  aseismicdesign  of  steel  plate  reinforced  concrete  structures-buildings  and  structures  [S].  Tokyo:  Japan  ElectricAssociation Nuclear Standards Committee, 2005.
[24] 赵唯以. 低速冲击下双钢板混凝土组合结构的力学性能研究[D]. 北京: 北京航空航天大学, 2018.
Zhao Weiyi. Performance of Steel-concrete Composite Structures under Low-velocity Impact[D]. Beijing:Beihang University,2018.
[25] Weiyi Zhao, Lin Wang, Guotao Yang, Ziguo Wang, Zepeng Gao, Quanquan Guo. Strain rate effect of steel concrete composite panel indented by a hemispherical rigid body[J]. Steel and Composite Structures, 2020, 36(6): 703-710.

PDF(2471 KB)

4459

Accesses

0

Citation

Detail

段落导航
相关文章

/