基于实船测量的船舶结构冰激振动特性研究

何帅康1,陈晓东1,崔洪宇1,2,季顺迎1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 319-326.

PDF(1780 KB)
PDF(1780 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 319-326.
论文

基于实船测量的船舶结构冰激振动特性研究

  • 何帅康1,陈晓东1,崔洪宇1,2,季顺迎1
作者信息 +

A study on ice induced vibration of a ship structure based on full scale measurement

  • HE Shuaikang1, CHEN Xiaodong1, CUI Hongyu1,2, JI Shunying1
Author information +
文章历史 +

摘要

冰区航行的船舶结构在冰载荷作用下产生明显的振动现象,明确冰激振动特性对冰级船舶的结构设计与冰区航行安全评估具有重要意义。为研究船舶的冰激振动特性,在我国第八次北极科学考察中对“雪龙”号科考船的结构振动开展了系统的实船测量。由于冰船作用区域主要位于船体艏部,本文采用三向加速度传感器对艏尖舱区域的振动响应进行了测量。为研究海冰类型对结构振动的影响,通过视频摄像机对航线冰情进行了观测,并对比分析了开阔水域、碎冰区、平整冰区、冰脊区中船体的振动响应特性。采用ISO6954规范对“雪龙”号科考船进行了冰激振动评价,并对实船振动频率和幅值进行了统计学分析。结果表明,冰激振动的幅值介于有害振动和无害振动之间,其中沿船长方向的振动幅值最小,而沿船宽方向的振动幅值最大,船体的振动幅值服从广义极值分布。此外,海冰的附加质量影响了船体冰激振动频率,冰激振动的幅值均随航速和冰厚的增加而增大。

Abstract

For vessels navigating in ice infected waters, structure responses strong vibration due to ice loads. It is of great significance to study the characteristics of ice-induced vibration for ice-class ship design and navigation safety assessment in ice area. To study ice-induced vibration, a series of full-scale experiments are performed on the icebreaker Xuelong during the 8th Arctic Scientific Expedition of China. Considering the ice-structure interaction frequently appears at the bow area, the vibration is measured through a triaxial accelerometer installed in peak cabin. In order to study the influence of sea ice type on structural vibration, the ice condition is recorded by video cameras, the analysis is done with the data from different ice condition including open water, broken ice, level ice and ice ridges. Furthermore, the vibration of the icebreaker Xuelong is evaluated with the ISO 6954 standard and the statistic study is carried out according to the evaluation index defined in the standard. The results show that the ice-induced vibration was between the harmful vibration and the harmless vibration levels, while the vibration is strongest along the ship width direction and weakest along the length direction. In overall the vibration amplitude flows a generalized extreme value distribution. In addition, the different ice type results in different additional mass and consequently influences the first-order vibration frequency. The vibration amplitude has positive correlation with ship speed and ice thickness.

关键词

北极航行 / 冰激振动 / 实船测量 / 船舶结构

Key words

navigation in the Arctic / ice-induced vibration / full-scale measurement / ship structure

引用本文

导出引用
何帅康1,陈晓东1,崔洪宇1,2,季顺迎1. 基于实船测量的船舶结构冰激振动特性研究[J]. 振动与冲击, 2023, 42(20): 319-326
HE Shuaikang1, CHEN Xiaodong1, CUI Hongyu1,2, JI Shunying1. A study on ice induced vibration of a ship structure based on full scale measurement[J]. Journal of Vibration and Shock, 2023, 42(20): 319-326

参考文献

[1]. 胡冰, 于淼, 李志远, 等. 基于实船观测的北极东北航线窗口期海冰冰情研究[J]. 船舶力学, 2021, 25(08): 1001-1009.
HU Bing, YU Miao, LI Zhiyuan, et al. Study of ice condition on the Northeast Route during window period based on onboard observation[J]. Journal of Ship Mechanics, 2021, 25(08): 1001-1009.
[2]. SOAL K I, BEKKER A. Whole-body vibration comfort on the S.A.Agulhas II Polar Supply and Research Vessel during a voyage to Antarctica[C]// 48th UK Group Meeting on Human Responses to Vibration, Ascot, England, 2014.
[3]. BEKKER A, SOAL K I, MCMAHON K J . Whole-body vibration exposure on board a Polar Supply and Research Vessel in open water and in ice[J]. Cold regions science and technology, 2017, 141: 188-200.
[4]. PALMER A, YUE Q, GUO F. Ice-induced vibrations and scaling[J]. Cold regions science and technology, 2010, 60(3):189-192.
[5]. KOTILAINEN M, VANHATALO J, SUOMINEN M, et al. Predicting ice-induced load amplitudes on ship bow conditional on ice thickness and ship speed in the Baltic Sea[J]. Cold Regions Science and Technology, 2017, 135(3): 116-126.
[6]. HEYN H M, SKJETNE R. Time-frequency analysis of acceleration data from ship-ice interaction events[J]. Cold regions science and technology, 2018, 156: 61-74.
[7]. 刘瀛昊, 佟福山, 高良田. 基于原型测量的极地航行船舶船体冰载荷分析[J]. 振动与冲击, 2017, 36(07): 226-233.
LIU Yinghao, TONG Fushan, GAO Liangtian. Ice-induced load analysis for hull of an ice-going vessel based on full-scale measurement[J]. Journal of Vibration and Shock, 2017, 36(07): 226-233.
[8]. YUE Q, BI X. Ice-Induced Jacket Structure Vibrations in Bohai Sea[J]. Journal of Cold Regions Engineering, 2000, 14(2): 81-92.
[9]. NORD T S, OISETH O, LOURENS E M. Ice force identification on the Nordstrmsgrund lighthouse[J]. Computers and Structures, 2016, 169(6):24-39.
[10]. SUOMINEN M, KARHUNEN J, BEKKER A, et al. Full-scale measurements on-board PSRV S.A. Agulhas II in the Baltic Sea[C]// 22nd International Conference on Port and Ocean Engineering under Arctic Conditions, Espoo, Finland, 2013.
[11]. OMER H, BEKKER A. Human responses to wave slamming vibration on a polar supply and research vessel[J]. Applied Ergonomics, 2018, 67:71-82.
[12]. 季顺迎, 雷瑞波, 李春花, 等. “雪龙”号科考船在冰区航行的船体振动测量研究[J]. 极地研究, 2017, 29(4): 427-435.
JI Shunying, LEI Reuibo, LI Chunhua, et al. Measurement of ice-induced local vibration of r/v xuelong icebreaker during its navigation in ice-covered fields[J]. Chinese Journal of Polar Research, 2017, 29(4): 427-435.
[13]. 庞福振, 李海超, 陈海龙, 等. 船舶破冰振动试验研究[J]. 船舶力学, 2020, 24(10): 1325-1332.
PANG Fuzhen, LI Haichao, CHEN Hailong, et al. Study on icebreaking vibration experiment of an icebreaker[J]. Journal of Ship Mechanics, 2020, 24(10): 1325-1332.
[14]. DU Y, SUN L, PANG F, et al. Experimental research of hull vibration of a full-scale river icebreaker[J]. Journal of Marine Science and Application, 2020:1-13.
[15]. 孔帅, 崔洪宇, 季顺迎. 船舶结构海冰载荷的实船测量及反演方法研究[J]. 振动与冲击, 2020, 39(20): 8-16.
KONG Shuai, CUI Hongyu, JI Shunying. Field measurement and an identification method of sea ice load on ship structures[J]. Journal of Vibration and Shock, 2020, 39(20): 8-16.
[16]. 骆寒冰, 徐慧, 余建星, 等. 舰船砰击载荷及结构动响应研究综述[J]. 船舶力学, 2010, 14(04): 439-450.
LUO Hanbing, XU Hui, YU Jianxing, et al. Review of the state of the art of dynamic responses induced by slamming loads on ship structures[J]. Journal of Ship Mechanics, 2010, 14(04): 439-450.
[17]. 吴武辉, 向阳, 王冠, 等. 螺旋桨激励条件下结构振动特性研究[J]. 噪声与振动控制, 2018, 38(1): 134-137.
WU Wuhui, XIANG Yang, WANG Guan, et al. Research on the propellers characteristics of structure vibration in the excited condition[J]. Noise and Vibration Control, 2018, 38(1): 134-137.
[18]. TAN X, Su B, Riska K, et al. A six-degrees-of-freedom numerical model for level ice–ship interaction[J]. Cold Regions Science and Technology, 2013, (92): 1-16.
[19]. LIU L, JI S. Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field[J]. Applied Ocean Research, 2018, 75: 53-65.
[20]. LU W, LUBBAD R, LOSET S, et al. Fracture of an ice floe: Local out-of-plane flexural failures versus global in-plane splitting failure[J]. Cold regions science and technology, 2016, 123(3): 1-13.
[21]. 李紫麟, 刘煜, 孙珊珊, 等. 船舶在碎冰区航行的离散元模型及冰载荷分析[J]. 力学学报, 2013, 45(6): 868-877.
LI Zilin, LIU Yu, SUN Shanshan, et al. Analysis of ship maneuvering performances and ice loads on ship hull with discrete element model in broken-ice fields [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 868-877.
[22]. LEPPÄRANTA M, LENSU M, KOSLOFF P, et al. The life story of a first-year sea ice ridge[J]. Cold regions science and technology, 1995, 23(3): 279-290.
[23]. STRUB-KLEIN L, SUDOM D. A comprehensive analysis of the morphology of first-year sea ice ridges[J]. Cold regions science and technology, 2012, 82: 94-109.
[24]. 吴嘉蒙, 夏利娟, 金咸定, 等. ISO 6954振动评价标准新旧版本的比较研究[J]. 振动与冲击, 2012, 31(10): 177-182.
WU Jiameng, XIA Lijuan, JIN Xianding, et al. Comparison between new and old versions of vibration standards ISO 6954[J]. Journal of Vibration and Shock, 2012, 31(10): 177-182.
[25]. 朱红日, 季顺迎. 冰脊压剪试验及其对直立结构冰载荷的离散元分析[J]. 力学与实践, 2021, 43(02): 234-243.
ZHU Hongri, JI Shunying. Discrete element analysis of punch through test of ice ridge and its loads on vertical structure[J]. Mechanics in Engineering, 2021, 43(2): 234-243.
[26]. WEI C, LEIRA B J, NAESS A. Probabilistic methods for estimation of the extreme value statistics of ship ice loads[J]. Cold regions science and technology, 2018, 146:87-97.
[27]. SOAL K I, GOVERS Y, BIENERT J, et al. System identification and tracking using a statistical model and a Kalman filter[J]. Mechanical Systems and Signal Processing, 2019, 133: 106-127.
[28]. MATUSIAK, J. Dynamic loads and response of icebreaker Sisu during continuous icebreaking[R]. Winter Navigation research board, Helsinki, 1982.
[29]. IBRAHIM R A, CHALHOUB N G, FALZARANO J. Interaction of Ships and Ocean Structures With Ice Loads and Stochastic Ocean Waves[J]. Applied Mechanics Reviews, 2007, 60(5):246.
[30]. FU S, ZHANG D, MONTEWKA J, et al. Towards a probabilistic model for predicting ship besetting in ice in Arctic waters[J]. Reliability Engineering and System Safety, 2016, 155:124-136

PDF(1780 KB)

1386

Accesses

0

Citation

Detail

段落导航
相关文章

/