剪切增稠液及其复合织物动态力学行为与数值研究进展

刘璐璐1,谢志浩1,赵振华2,罗刚2,陈伟1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 58-68.

PDF(1455 KB)
PDF(1455 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 58-68.
论文

剪切增稠液及其复合织物动态力学行为与数值研究进展

  • 刘璐璐1,谢志浩1,赵振华2,罗刚2,陈伟1
作者信息 +

Research progress on dynamic mechanical behavior and numerical study of shear thickening fluid and its composite fabrics

  • LIU Lulu1, XIE Zhihao1, ZHAO Zhenhua2, LUO Gang2, CHEN Wei1
Author information +
文章历史 +

摘要

剪切增稠液(Shear thickening fluids, STFs)是一种新型智能液体装甲材料,与织物复合时可有效提升织物抗冲击能力,在结构冲击领域有广阔的应用潜力。论文对STF及其增强织物的动态力学行为与数值仿真方法最新进展进行了综述和评价,介绍了STF剪切增稠机理及流变特性的主要影响因素,讨论了STF、STF复合织物的动态力学行为及本构模型,分析了STF复合织物的抗冲击性能的影响因素及STF对织物的增强机理,讨论了STF复合织物在数值仿真方法研究方面的最新进展。最后对STF及其增强织物的力学行为研究进行了总结,并对STF的发展趋势进行了展望。

Abstract

Shear thickening fluids (STFs) are a new type of intelligent liquid armor material, which can effectively improve the impact resistance of fabrics when combined with fabrics, and has broad application potential in the field of structural impact. This paper reviews and evaluates the latest progress in dynamic mechanical behavior and numerical simulation methods of STF and its reinforced fabrics. The shear thickening mechanism of STF and the main influencing factors of rheological properties are introduced, and the dynamic mechanical behavior and constitutive structure of STF and STF composite fabrics are discussed. The factors affecting the impact resistance of STF composite fabrics and the strengthening mechanism of STF to fabrics were analyzed. The progress in the research of STF composite fabrics in numerical simulation methods is discussed. Finally, the research on the mechanical behavior of STF and its reinforced fabrics is summarized, and the development trend of STF is prospected.

关键词

剪切增稠液体 / 织物 / 流变性能 / 力学行为 / 高速冲击 / 数值仿真

Key words

Shear thickening fluid / Fabric / Rheological property / Mechanical behavior / High speed impact / Numerical simulation

引用本文

导出引用
刘璐璐1,谢志浩1,赵振华2,罗刚2,陈伟1. 剪切增稠液及其复合织物动态力学行为与数值研究进展[J]. 振动与冲击, 2023, 42(20): 58-68
LIU Lulu1, XIE Zhihao1, ZHAO Zhenhua2, LUO Gang2, CHEN Wei1. Research progress on dynamic mechanical behavior and numerical study of shear thickening fluid and its composite fabrics[J]. Journal of Vibration and Shock, 2023, 42(20): 58-68

参考文献

[1] ZHANG Q Y, QIN Z G, YAN R S, et al.Processing technology and ballistic-resistant mechanism of shear thickening fluid/high-performance fiber-reinforced composites: A review[J]. Composite Structures, 2021,266: 113806.
[2]  张倩玉, 秦志刚, 阎若思, 贾立霞, 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021,42(6): 180-188.
Zhang Qianyu, Qin Zhigang, Yan Ruosi, Jia Lixia,  Research progress on bulletproof properties of shear thickening fluid/high performance fiber composites[J]. Journal of Textile Research, 2021,42(6): 180-188.
[3] MORIANA A, TIAN T, SENCADAS V, et al. Comparison of rheological behaviors with fumed silica-based shear thickening fluids[J]. Korea-Australia Rheology Journal. 2016, 28(3): 197-205.
[4]  陈潜, 何倩云, 刘梅, 等.剪切增稠液的力学性能与机理[J]. 固体力学学报, 2016,37(6): 518-537.
CHEN Qian, HE Qianyun, LIU Mei, et al. Mechanical properties and mechanism of shear thickening fluid[J]. Chinese Journal of Solid Mechanics,2016,37(6):518-537.
[5] KHODADADI A, LIAGHAT G, TAHERZADEH-FARD A, et al.Impact characteristics of soft composites using shear thickening fluid and natural rubber–A review of current status[J]. Composite Structures, 2021,271: 114092.
[6] ZAREI M , AALAIE J . Application of shear thickening fluids in material development [J]. Journal of Materials Research and Technology, 2020, 9(5): 10411-10433.
[7] 陆振乾, 许玥, 孙宝忠, 剪切增稠液及其在抗冲击缓冲方面研究进展[J]. 振动与冲击, 2019. 38(17): 128-136.
LU Zhenqian, XU Yue, SUN Baozhong. Progress in shear thickening fluid study and its application in anti-impact and cushion areas[J]. Journal of Vibration and Shock, 2019, 38(17): 128-136.
[8] LAHA A, MAJUMDAR A. Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics[J]. Applied Clay Science, 2016, 132-133: 468-474.
[9] LIU M, ZHANG S S, LIU S, et al. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance[J]. Composites Part A, 2019, 126: 105612.
[10] ZHAO Q, YUAN J, JIANG H M, et al. Vibration control of a rotor system by shear thickening fluid dampers[J]. Journal of Sound and Vibration, 2021, 494: 115883.
[11] GÜRGEN S, SOFUOĞLU M. Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes[J]. Composite Structures, 2019, 226: 111236.
[12] HE Q Y, CAO S S, WANG Y M, et al. Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel[J]. Composites Part A: Applied Science and Manufacturing, 2018, 106: 82-90.
[13] LEE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Material Science, 2003, 38(13): 2825 - 2833.
[14] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability[J]. Journal of Rheology, 1972,16: 155–73.
[15] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests [J]. Journal of Colloid and Interface Science, 1974. 46(3): 491-506.
[16] BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. Journal of Chemical Physics,1989, 91(3): 1866-1874.
[17] MARANZANO B J, WAGNER N J. Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition[J]. The Journal of Chemical Physics, 2002. 117(22): 10291-10302.
[18] GHOSH A, CHAUHAN I, MAJUMDAR A, et al. Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid[J]. Cellulose, 2017, 24(10): 4163-4171.
[19] FARR R S, MELROSE J R, BALL R C. Kinetic theory of jamming in hard-sphere startup flows[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1997, 55(6): 7203-7211.
[20] FALL A, HUANG N, BERTRAND F, et al. Shear thickening of cornstarch suspensions as a reentrant jamming transition[J]. Physical Review Letters, 2008, 100(1):
[21] PETERS I R, JAEGER H M. Quasi-2D dynamic jamming in cornstarch suspensions: visualization and force measurements[J]. Soft Matter, 2014, 10(34): 6564-6570.
[22] SETO R, MARI R, MORRIS J F,et al. Discontinuous shear thickening of frictional hard-sphere suspensions[J]. Physical Review Letters, 2013,111(21): 218301.
[23] 陈开慧, 剪切增稠液的非牛顿流变行为及其微观机理的数值研究[D]. 合肥:中国科学技术大学, 2019.
[24] CHEN K H, WANG Y, XUAN S H,et al. Contribution of frictional contact during steady and oscillatory shear in the discontinuous shear thickening fluid[J]. Smart Materials and Structures, 2019, 28(4): 45009.
[25] MARANZANO B J, WAGNER N J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions[J]. The Journal of Chemical Physics, 2001,114(23): 10514-10527.
[26] JIANG W Q, SUN Y Q, XU Y L,et al. Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures[J]. Rheologica Acta, 2010, 49(11/12): 1157-1163.
[27] WEI R B, DONG B, WANG F L, et al. Effects of silica morphology on the shear‐thickening behavior of shear thickening fluids and stabbing resistance of fabric composites[J]. Journal of Applied Polymer Science, 2019,48809.
[28] KALMAN D P, MERRILL R L, WAGNER N J,et al. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle−Fluid Suspensions[J]. ACS Applied Materials & Interfaces, 2009, 1(11): 2602-2612.
[29] QIN J B, ZHANG G C, SHI X T. Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol[J]. 2017,38(7): 935 - 942.
[30] LIU X Q, BAO R Y, WU X J,et al. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid[J]. RSC Advances, 2015,5(24): 18367 - 18374.
[31] HASANZADEH M, MOTTAGHITALAB V, REZAEI M. Rheological and viscoelastic behavior of concentrated colloidal suspensions of silica nanoparticles: A response surface methodology approach[J]. Advanced Powder Technology, 2015,26(6): 1570-1577.
[32] KANG T J, KIM C Y, HONG K H. Rheological Behavior of Concentrated Silica Suspension and Its Application to Soft Armor[J]. Journal of Applied Polymer Science, 2012,124: 1534–1541.
[33] LI S B, WANG J X, CAI W,et al. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions[J]. Chemical Physics Letters, 2016, 658: 210-214.
[34] WARREN J, OFFENBERGER S, TOGHIANI H,et al. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18650-18661.
[35] 程倩倩, 功能化离子液体基剪切增稠液的制备及其流变学行为研究[D]. 秦皇岛:燕山大学, 2020.
[36] WAITUKAITIS S R, JAEGER H M. Impact-activated solidification of dense suspensions via dynamic jamming fronts[J]. Nature, 2012, 487(7406): 205-209.
[37] TIAN T F, PENG G R, LI W H,et al. Experimental and modelling study of the effect of temperature on shear thickening fluids[J]. Korea-Australia Rheology Journal, 2015, 27(1): 17-24.
[38] ZHANG X, WANG P F, KURKIN A,et al. Mechanical response of shear thickening fluid filled composite subjected to different strain rates[J]. International Journal of Mechanical Sciences, 2021, 196: 106304.
[39] CUI, X Y, YE L, WANG H J,et al. Solidification of a shear thickening fluid in a finite volume under low-velocity impact[J]. International Journal of Impact Engineering, 2022, 170: 104358.
[40] KURKIN A, LIPIK V, ZHANG X,et al. In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids[J]. Polymers, 2022, 14(14): 2768.
[41] LI A Q, YANG G, YAO C H,et al. Influence of geometry constraint in finite space on impact resistance of shear thickening fluid[J]. Smart materials and structures, 2022, 31(3): 35022.
[42] CHENG J L, YE L, FU K K,et al. Effect of striker shape on impact energy absorption of a shear thickening fluid[J]. Composites Communications, 2021,23: 100560.
[43] FU K K, WANG H X, ZHANG Y X,et al. Escobedo Juan P, Hazell Paul J, Friedrich Klaus, Dai Shaocong, Rheological and energy absorption characteristics of a concentrated shear thickening fluid at various temperatures[J]. International Journal of Impact Engineering, 2020, 139: p. 103525.
[44] TANG E L, WANG Q C, HAN Y F,et al. Shear thickening properties of nano SiO2/PEG dispersion system under impact loading. Waves in random and complex media[J], 2022. ahead-of-print(ahead-of-print): 1-27.
[45] 冯新娅, 剪切增稠流体的动态响应及其在防护结构中的应用[D].北京:北京理工大学, 2014.
[46] LIM A S, LOPATNIKOV S L, GILLESPIE J W. Development of the split-Hopkinson pressure bar technique for viscous fluid characterization[J]. Polymer testing, 2009, 28: 891–900.
[47] LIM A S, LOPATNIKOV S L, WAGNER N J,et al. Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique[J]. Rheologica Acta, 2010, 49(8): 879-890.
[48] JIANG W F, GONG X L, XUAN S H,et al. Stress pulse attenuation in shear thickening fluid[J]. Applied Physics Letters, 2013, 102(10): 101901.
[49] ASIJA N, CHOUHAN H, GEBREMESKEL A,et al. High strain rate characterization of shear thickening fluids using Split Hopkinson Pressure Bar technique[J]. International Journal of Impact Engineering, 2017, 110: 365-370.
[50] ASIJA N, CHOUHAN H, GEBREMESKEL S A,et al. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica[J]. Journal of Nanoparticle Research, 2017, 19: 21:1-18.
[51] TAN Z H, MA H Q, ZHOU H,et al. The influence of graphene on the dynamic mechanical behaviour of shear thickening fluids[J]. Advanced Powder Technology, 2019,30(10): 2416-2421.
[52] FU K K, WANG H J, WANG S Z,et al. Compressive behaviour of shear-thickening fluid with concentrated polymers at high strain rates[J]. Materials and Design, 2018, 140: 295–306.
[53] LIM A S, LOPATNIKOV S L, WAGNER N J,et al. Phenomenological modeling of the response of a dense colloidal suspension under dynamic squeezing flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2011,166: 680-688.
[54] LAM L, CHEN W S, HAO H,et al. Numerical study of bio-inspired energy-absorbing device using shear thickening fluid (STF)[J]. International Journal of Impact Engineering, 2022. 162: 104158.
[55] GALINDO-ROSALES F J, RUBIO-HERNÁNDEZ F J, SEVILLA A. An apparent viscosity function for shear thickening fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2011,166: 321-325.
[56] CROSS M M. Rheology of non-newtonian fluids: A new flow equation for pesudoplastic systems[J]. Journal of Colloid Science, 1965, 20: 417-437.
[57] ZHAO F, WU L W, LU Z Q,et al. Design of shear thickening fluid/polyurethane foam skeleton sandwich composite based on non-Newtonian fluid solid interaction under low-velocity impact[J]. Materials & Design, 2022. 213: p. 110375.
[58] 尹根, 姚松, 刘凯, 等 . 低速冲击条件下剪切增稠液力学特性的试验和数值仿真研究[J]. 中南大学学报(自然科学版), 2021, 52(4): 1327−1336.
YIN Gen, YAO Song, LIU Kai, et al. Experimental and numerical simulation of mechanical properties of shear thickening fluid during low velocity impact[J]. Journal of Central South University(Science and Technology), 2021, 52(4): 1327−1336.
[59] 齐佩佩, STF本构模型及金属颗粒增强STF力学性能的研究[D].沈阳建筑大学, 2018.
[50] ASIJA N, CHOUHAN H, GEBREMESKEL S A,et al. Bhatnagar N, High strain rate behavior of STF-treated UHMWPE composites[J]. International Journal of Impact Engineering, 2017,110: 359-364.
[61] ASIJA N, CHOUHAN H, AMARE G,et al. Impact response of Shear Thickening Fluid (STF) treated ultra high molecular weight poly ethylene composites – study of the effect of STF treatment method[J]. Thin-Walled Structures, 2018, 126: 16-25.
[62] LOMAKIN E V, MOSSAKOVSKY P A, BRAGOV A M,et al. Investigation of impact resistance of multilayered woven composite barrier impregnated with the shear thickening fluid[J]. Archive of applied mechanics, 2011, 81: 2007–2020.
[63] CAO S S, CHEN Q, WANG Y P,et al. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid[J]. Composites part A: Applied Science and Manufacturing, 2017, 100: 161-169.
[64] 何倩云, 剪切增稠液及其织物复合材料的力学性能研究[D]. 中国科学技术大学, 2018.
[65] LIU L L, YANG Z Z, LIU X,et al. Yarn dynamic tensile behavior and meso-scale numerical simulation method for STF-Kevlar fabrics[J]. Thin-Walled Structures, 2021, 159: 107319.
[66] 刘晓, 陈伟,刘璐璐,等.单束STF强化Kevlar织物力学性能研究[J], 南京航空航天大学学报, 2018,50(1): 71-80.
LIU Xiao, CHEN Wei, LIU Lulu, et al. Study on mechanical properties of STF-Kevlar single yarn[J], Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(1): 71-80.
[67] LIU L L, CAI M, LUO G,et al. Macroscopic numerical simulation method of multi-phases STF impregnated Kevlar fabrics. Part 1: Quasi-static and dynamic mechanical test[J]. Composite Structures, 2021. 266: 113780.
[68] GÜRGEN S, KUŞHAN M C, LI W H. Shear thickening fluids in protective applications: A review[J]. Progress in Polymer Sciences, 2017, 75: 48-72.
[69]MEHDI Z, HYDARINASAB A, HASHEMABADI S H,et al. Study of the effects of size/shape of graphene oxide and SiO2 nanoparticles on shear thickening behaviour of polyethylene glycol 400- based fluid: molecular dynamics simulation[J]. Molecular Simulation, 2022,
[70] BAJYA M, MAJUMDAR A, BUTOLA B S,et al. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid[J]. Composites Part B :Engineering, 2020, 183: 107721.
[71] SAHOO S K, MISHRA S, ISLAM E,et al. Tuning shear thickening behavior via synthesis of organically modified silica to improve impact resistance of Kevlar fabric[J]. Materials Today Communication, 2020, 23: 100892.
[72] KHODADADI A, LIAGHAT G, VAHID S,et al. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid[J]. Composites. Part B Engineering, 2019, 162: 643-652.
[73] WANG Q S, SUN R J, YAO M,et al. The influence of temperature on inter-yarns fictional properties of shear thickening fluids treated Kevlar fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2019,116: 46-53.
[74] GHOSH A, MAJUMDAR A, BUTOLA B S. Modulating the rheological response of shear thickening fluids by variation in molecular weight of carrier fluid and its correlation with impact resi Arorastance of treated p-aramid fabrics[J]. Polymer Testing, 2020, 91: 106830.
[75] AFESHEJANI S H A, SABET S A R, ZEYNALI M E,et al. Energy Absorption in a Shear-Thickening Fluid[J]. Journal of Material Engineering Performance, 2014, 23(12): 4289-4297.
[76] LIU L L, YANG Z Z, ZHAO Z H,et al. The influences of rheological property on the impact performance of kevlar fabrics impregnated with SiO2/PEG shear thickening fluid[J]. Thin-Walled Structures, 2020,151: 106717.
[77] LIU L L, CAI M, LIU X,Et al. Ballistic impact performance of multi-phase STF-impregnated Kevlar fabrics in aero-engine containment[J]. Thin-Walled Structures, 2020, 157: 107103.
[78] MAJUMDAR A, BUTOLA B S, SRIVASTAVA A. Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid[J]. Material & Design, 2014, 54: 295-300.
[79] SRIVASTAVA A, MAJUMDAR A, BUTOLA B S. Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid[J]. Material Science and Engineering A, 2011, 529: 224-229.
[80] PARK J L, YOON B I, PAIK J G,et al. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid; Part II - Effect of fabric count and shot location[J]. Textile Research Journal, 2012, 82(6): 542-557.
[81] MAWKHLIENG U, MAJUMDAR A. Designing of hybrid soft body armour using high-performance unidirectional and woven fabrics impregnated with shear thickening fluid[J]. Composite Structures, 2020. 253: 112776.
[82] ARORA S, MAJUMDAR A, BUTOLA B S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics[J]. Composite Structures, 2019, 210: 41-48.
[83] ARORA S, MAJUMDAR A, BUTOLA B S. Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response[J]. Composite Structures, 2020,233: 111720.
[84] MAWKHLIENG U, MAJUMDAR A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics[J]. Composites. Part B: Engineering. 2019, 175: 107167.
[85] GÜRGEN S, KUŞHAN M C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids[J]. Polymer Testing, 2017, 64: 296-306.
[86] HASANZADEH M, MOTTAGHITALAB V, REZAEI M,et al. Numerical and Experimental Investigations into the Response of STF-treated Fabric Composites Undergoing Ballistic Impact[J]. Thin-Walled Structures, 2017, 119: 700-706.
[87] MAJUMDAR A, BUTOLA B S, SRIVASTAVA A. An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials[J]. Materials & Design ,2013, 51: 148-153.
[88] BAI R X, LI W K, LEI Z K,et al. Experimental study of yarn friction slip and fabric shear deformation in yarn pull-out test[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 529-535.
[89] BAI R X, MA Y, LEI Z K,et al. Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test[J]. Composites Part A: Applied Science and Manufacturing, 2020. 128: 105678.
[90] QIN J B, GUO B R, ZHANG L, et al. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid[J]. Composites. Part B Engineering. 2020, 183: 107686.
[91] ALIKARAMI S, KORDANI N, SADOUGHVANINI A,et al. Effect of the yarn pull-out velocity of shear thickening fluid-impregnated Kevlar fabric on the coefficient of friction[J]. Journal of Mechanical Science and Technology, 2016, 30(8): 3559-3565.
[92] CHU Y Y, CHEN X G, WANG Q,et al. An investigation on sol–gel treatment to aramid yarn to increase inter-yarn friction[J]. Applied Surface Science, 2014, 320: 710-717.
[93] TALREJA K, CHAUHAN I, GHOSH A,et al. Functionalization of silica particles to tune the impact resistance of shear thickening fluid treated aramid fabrics[J]. RSC Advances, 2017, 7: 49787-49794.
[94] XU J H, ZHANG Y Y, WU M,et al. A phenomenological material model for PTFE coated fabrics[J]. Construction and Building Materials, 2020,237: p. 117667.
[95] DILEEP P K, TRÖGER J A, HARTMANN S,et al. Three-dimensional shear angle determination with application to shear-frame test[J]. Composite Structures, 2022, 285: 115134.
[96] NA W J, AHN H, HAN S J,et al. Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear rate[J]. Composites Part B: Engineering, 2016,97: 162-175.
[97] LI D Y, WANG R, LIU X,et al. Effect of dispersing media and temperature on inter-yarn frictional properties of Kevlar fabrics impregnated with shear thickening fluid[J]. Composite Structures, 2020, 249: 112557.
[98] QIN J B, WANG T W, YUN J,et al. Response and adaptability of composites composed of the STF-treated Kevlar fabric to temperature[J]. Composite Structures, 2021, 260: 113511.
[99] XIE Z H, HOU X D, LIU L L,et al. Influences of a wide service-environment temperature range on the ballistic performance of STF-impregnated Kevlar[J]. Composite Structures, 2022, 287: 115330.
[100] WEERASINGHE D, MOHOTTI D, ANDERSON J. Incorporation of shear thickening fluid effects into computational modelling of woven fabrics subjected to impact loading: A review[J]. International Journal of  Protective Structures, 2019: 204141961988907.
[101] YANG Y F, LIU Y C, XUE S N,et al. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles[J]. Composite Structures, 2021,267: p. 113856.
[102] LEE B, KIM C. Computational analysis of shear thickening fluid impregnated fabrics subjected to ballistic impacts[J]. Advanced Composite Materials, 2012, 21(2): 177–192.
[103] XU Y J, ZHANG H, HUANG G Y. Ballistic performance of B4C/STF/Twaron composite fabric. Composite Structures, 2022, 279: p. 114754.
[104] GÜRGEN S. Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts[J]. Thin-Walled Structures, 2020,148: 106573.
[105] KHODADADI A, LIAGHAT G H, SABET A R,et al. Aboutorabi A, Experimental and numerical analysis of penetration into Kevlar fabric impregnated with shear thickening fluid[J]. Journal of Thermoplastic Composites, 2018, 31(3): 392-407.
[106]MIRRAHIMI A H, HASANZADEH M, MOTTAGHITALAB V,et al. Numerical Modelling of Ballistic Impact on HMPP Woven Fabric Impregnated with Shear-thickening Fluids[J]. Procedia Engineering, 2017, 173: 73-76.
[107] KORDANI N, VANINI A S, AMIRI H. Numerical solution of penetration into woven Fabric target impregnated with Shear Thickening Fluid[J]. Polymers & Polymer Composites, 2016, 24(4): 281-287.
[108] PARK Y, KIM Y, BALUCH A H,et al. Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects[J]. Composite Structures, 2015,125: 520-529.
[109] RAJAN S D, MOBASHER B, SHARDA J,et al. Explicit finite element modeling of multilayer composite fabric for gas turbine engine containment systems, 2004. Part 1:Static Tests and Modeling .DOT/FAA/AR-04/40, P1.
[110] LIU L L, CAI M, LUO G,et al. Macroscopic numerical simulation method of multi-phase STF-impregnated Kevlar fabrics. Part 2: Material model and numerical simulation[J]. Composite Structures, 2021,262: 113662.
[111] RABB R J, FAHRENTHOLD E P. Simulation of large fragment impacts on shear-thickening fluid Kevlar[J]. Journal of Aircraft, 2011. 48(6): 2059-2067.
[112] PETEL O E.  Response of shear thickening materials to uniaxial shock compression[D]. Montreal, Quebec: McGill University, 2011.
[113] LU Z Q, WU L W, GU B H,et al. Numerical simulation of the impact behaviors of shear thickening fluid impregnated warp-knitted spacer fabric[J]. Composites Part B: Engineering, 2014,69: 191-200.
[114] SEN S, JAMAL M, NOUSHAD B,et al. Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite[J]. International Journal of Mechanical Sciences, 2019. 164: 105174.
[115] 李聃阳, 剪切增稠液性能优化及其Kevlar复合织物防刺性能与机理研究[D]. 天津:天津工业大学, 2021.
[116] ZHANG X T, ZHANG Q Y, YAN R S,et al. Fluid-structure interaction simulation and evaluation of ballistic impact of STF impregnated UHMWPE fiber composites[J]. Polymer Testing, 2022. 115: 107757.

PDF(1455 KB)

Accesses

Citation

Detail

段落导航
相关文章

/