基于MIMU的输电杆塔螺栓状态识别

陶慧1,2,贺国帅1,2,杨金显1,2,艾朋伟1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 98-104.

PDF(3463 KB)
PDF(3463 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (20) : 98-104.
论文

基于MIMU的输电杆塔螺栓状态识别

  • 陶慧1,2,贺国帅1,2,杨金显1,2,艾朋伟1,2
作者信息 +

Status identification of transmission tower bolts based on MIMU

  • TAO Hui1,2,HE Guoshuai1,2,YANG Jinxian1,2,AI Pengwei1,2
Author information +
文章历史 +

摘要

为识别输电杆塔螺栓是否松动,提出基于微惯性测量组合(micro inertial measurement unit ,MIMU)的输电杆塔螺栓状态识别的方法。首先利用MIMU采集杆塔螺栓的三轴加速度和三轴角速度振动数据,使用五点三次平滑法对振动数据降噪处理;其次提取降噪后振动数据的方差、峰-峰值、峭度、频率方差、重心频率和能量特征,利用熵权法(EWM)计算特征权重,构建特征权重分布;最后将特征权重分布与KL(Kullback Leibler)散度结合对杆塔螺栓状态识别。模拟实验和现场实验表明,当输电杆塔螺栓松动时,方差的权重减小,能量的权重增大,不同状态杆塔螺栓的特征权重分布不同,将特征权重分布与KL散度结合可以识别杆塔螺栓状态。

Abstract

In order to identify whether the transmission tower bolts are loose, a method for identifying the status of transmission tower bolts based on micro inertial measurement unit ( MIMU ) is proposed. Firstly, MIMU is used to collect the vibration data of three-axis acceleration and three-axis angular velocity of tower bolts, and the five-point cubic smoothing method is used to denoise the vibration data. Secondly, the variance, peak-peak, kurtosis, frequency variance, center of gravity frequency and energy characteristics of vibration data after noise reduction are extracted. The entropy weight method ( EWM ) is used to calculate the feature weight and construct the feature weight distribution. Finally, the feature weight distribution and Kullback Leibler(KL)divergence are combined to identify the state of tower bolts. Simulation experiments and field experiments show that when the transmission tower bolts are loose, the weight of variance decreases, and the weight of energy increases. The characteristic weight distribution of tower bolts in different states is different. Combining the characteristic weight distribution with KL divergence can identify the state of tower bolts.

关键词

微惯性测量组合(MIMU) / 输电杆塔 / 螺栓松动 / 熵权法 / KL散度

Key words

micro inertial measurement unit(MIMU);transmission tower;bolt loosening;entropy weight method / Kullback Leibler(KL)divergence

引用本文

导出引用
陶慧1,2,贺国帅1,2,杨金显1,2,艾朋伟1,2. 基于MIMU的输电杆塔螺栓状态识别[J]. 振动与冲击, 2023, 42(20): 98-104
TAO Hui1,2,HE Guoshuai1,2,YANG Jinxian1,2,AI Pengwei1,2. Status identification of transmission tower bolts based on MIMU[J]. Journal of Vibration and Shock, 2023, 42(20): 98-104

参考文献

[1] 张武能,汪毅,张留斌,等.输电铁塔螺栓连接结构健康监测技术进展与展望[J].中国电力,2021,54(02):18-26.
ZHANG Wuneng,WANG Yi,ZHANG Liubin,et al. Development and prospect of structure health monitoring technologies for bolted joints of transmission towers[J].Electric Power,2021,54(02):18-26
[2] 刘光辉,伍川,吕中宾,等.输电铁塔螺栓紧固特性影响因素试验研究[J].现代制造工程,2022(03):84-91.
LIU Guanghui,WU Chuan,LV Zhongbin,et al. Experimental study on factors of bolt fastening characteristics for transmission line tower [J].Modern Manufacturing Engineering,2022(03):84-91.
[3] Nikravesh S.M.Y,Goudarzi M. A review paper on looseness detection methods in bolted structures[J].Latin American Journal of Solids and Structures,2017,14(12):2153-2176.
[4] 刘昆.基于振动的机车转向架螺栓松动故障检测方法的研究[D].华东交通大学,2020.
[5] Na WS. Bolt loosening detection using impedance based non-destructive method and probabilistic neural network technique with minimal training data.[J]Engineering Structures,2021,226,111228
[6] 邵俊华,王涛,汪正傲,等.基于压电阻抗频率变化的螺栓松动检测技术[J].中国机械工程,2019,30(12):1395-1399+1408.
SHAO Junhua,WANG Tao,WANG Zhenghao,et al. Bolt looseness detection using piezoelectric impedance frequency shift method[J].China Mechanical Engineering,2019,30(12):1395-1399+1408.
[7] Kong X X, Li J. Image registration-based bolt loosening detection of steel joints [J]Sensors(Switzerland),2018,18(4),1000
[8] 张姝,王昊天,董骁翀,等.基于深度学习的输电线路螺栓检测技术[J].电网技术,2021,45(07):2821-2829.
ZHANG Shu,WANG Haotian,DONG Xiaochong,et al. Bolt detection technology of transmission lines based on deep learning [J].Power System Technology,2021,45(07):2821-2829.
[9] 何冰,王媚,张羽公,等.基于振动信号的输电铁塔螺栓松动检测技术研究[J].功能材料与器件学报,2019,25(03):214-219.
HE Bing,WANG Mei,ZHANG Yugong,et al. Research on loose detection technology of transmission tower bolt based on vibration signal[J].Journal of Functional Materials and Devices,2019,25(03):214-219.
[10] JI B F,XIONG Q,XING P P.et al. Bolt loosening localization at flange joints using wind-induced response for high-rise tower[J].International Journal of Steel Structures,2021,21(5):1790-1803
[11] ZHAO Y,XIAO Y,WANG H M,et al, Effect of bolt tightening force on the transmission tower modal parameters and a method for looseness identification[J].Energy Reports,2021,7:842-849.
[12] TAN D M,QU W L,TU J W,et al. Identification of loosen bolt of transmission tower based on wavelet packet analysis and neural net[C]// 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan : IEEE ,2011.
[13] 杨金显,王蒙蒙,刘益朋,等.基于MEMS惯性测量的输电导线振动损伤分析[J].振动与冲击,2020,39(17):261-267.
YANG Jinxian,WANG Mengmeng,LIU Yipeng,et al. Vibration damage analysis of transmission line based on MEMS inertial measurement[J]. Journal of Vibration and Shock,2020,39(17):261-267.
[14] 谢锋云,符羽,刘昆,等.基于多域特征的螺栓松动检测方法研究[J].电子测量与仪器学报,2021,35(04):109-117.
XIE Fengyun,FU Yu,LIU Kun,et al. Research on bolt looseness detection method based on multi-domain feature[J].Journal of Electronic Measurement and Instrumentation,2021,35(04):109-117.
[15] 王磊,张清华,马春燕,等.故障诊断中无量纲指标研究综述[J].信息技术,2014(02):19-22.
WANG Lei,ZHANG Qinghua,MA Chunyan,et al. Summary on dimensionless indicators in fault diagnosis technology[J].Information Technology,2014(02):19-22.
[16] 张九思,马宏忠,李勇,等.基于VMD的变压器绕组松动故障分析与诊断[J].高压电器,2021,57(08):198-208.
ZHANG Jiusi,MA Hongzhong,LI Yong,et al. Analysis and diagnosis on looseness of transformer winding based on VMD[J].High Voltage Apparatus,2021,57(08):198-208.
[17] 赵书涛,李云鹏,王二旭,等.基于电—振信号熵权特征的断路器储能机构故障诊断方法[J].高压电器,2019,55(11):204-210.
ZHAO Shutao,LI Yunpeng,WANG Erxu,et al. Fault diagnosis method of circuit breaker energy storage mechanism based on electro-vibration signal entropy weight feature[J]. High Voltage Apparatus,2019,55 (11):204-210.
[18] 李一鸣,白龙,蒋周翔,等.基于EEMD-KPCA和KL散度的垮落煤岩识别[J].煤炭学报,2020,45(02):827-835.
LI Yiming,BAI long,JIANG Zhouxiang,et al. Caving coal-rock identification based on EEMD-KPCA and KL divergence[J].Journal of China Coal Society,2020,45(02):827-835.
[19] 杨金显,晁丽君,李双磊.基于惯性测量的输电导线覆冰运动特征提取[J].振动与冲击,2019,38(07):172-178.
YANG Jinxian,CHAO Lijun,LI Shuanglei. Covered ice motion feature extraction for transmission lines based on inertial measurement[J].Journal of Vibration and Shock,2019,38(07):172-178.
[20] 叶彬,周凯,黄永禄,等.基于AWM和OSVD的局部放电白噪声抑制方法[J].中国电机工程学报,2021,41(11):3978-3987.
YE Bin,ZHOU Kai,HUANG Yonglu,et al. A white nosie suppression method for partial discharge based on AWM and OSVD[J].Proceedings of the CSEE,2021,41(11):3978-3987.

PDF(3463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/