异形大跨指廊屋盖脉动风压非高斯特性研究

汪之松1,2,姚彬彬2,方智远3,李正良1,2,涂熙1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 1-10.

PDF(4032 KB)
PDF(4032 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 1-10.
论文

异形大跨指廊屋盖脉动风压非高斯特性研究

  • 汪之松1,2 ,姚彬彬2,方智远3,李正良1,2,涂熙1,2
作者信息 +

Non-Gaussian characteristics of fluctuating wind pressure on irregular large-span roof

  • WANG Zhisong1,2, YAO Binbin2,FANG Zhiyuan3, LI Zhengliang1,2, TU Xi1,2
Author information +
文章历史 +

摘要

基于刚性模型测压风洞试验,研究异形大跨屋盖的平均风压分布及脉动风压非高斯特征,分别采用高阶统计量法和柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-Smirnov,K-S)检验法对脉动风压的非高斯特性进行判别并划分其分布区域,最后通过五种概率分布模型对非高斯脉动风压的概率分布进行拟合。结果表明:屋盖表面平均风压以负压分布为主,且负压极值多出现于屋脊或屋面转角的气流分离区;异形大跨屋盖脉动风压的非高斯特性显著,非高斯脉动风压主要出现在屋面迎风前缘、指廊背风侧和屋面转角处,相较于高阶统计量法,K-S检验法的划分结果集中度更好,规律性更强;通过相关系数和均方根误差评价拟合效果,五种概率分布模型中的Weibull模型对非高斯脉动风压概率分布的拟合效果最佳。

Abstract

Based on the wind tunnel pressure test of the rigid model of the irregular large-span roof, the distribution of average wind pressure and non-Gaussian characteristics of the roof surface pulsating wind pressure were studied. High-order Statistical Moment Method and Kolmogorov-Smirnov (K-S) Method were used to discriminate the non-Gaussian pulsating wind pressure and divide its distribution area. Then five probability distribution models were used to fit the probability distribution of non-Gaussian pulsating wind pressure. The results show that the average wind pressure on the roof surface is generally negative, and the extreme value of negative pressure mostly occurs in the airflow separation area of the roof ridge or roof corner. The results of non-Gaussian pulsating wind pressure division area indicate: the non-Gaussian pulsating wind pressure of irregular large-span roof is obvious, and the non-Gaussian pulsating wind pressure mainly occurs in the windward eave, the leeward side of the corridor and the roof corner. However,the results of the K-S Method are more centralized and more regular compared with High-order Statistical Moment Method. The fitting performance is evaluated by Correlation coefficient and Root Mean Square Error. Among the five probability distribution models, the Weibull model has the best fitting effect on the probability distribution of non-Gaussian pulsating wind pressure.

关键词

大跨屋盖结构 / 非高斯特性 / 高阶统计量法 / 柯尔莫哥洛夫-斯米尔诺夫(K-S)检验法 / 概率分布模型

Key words

large-span roof / non-Gaustian characteristic / High-order Statistical Moment Method / Kolmogorov-Smirnov (K-S) test / probability distribution model

引用本文

导出引用
汪之松1,2,姚彬彬2,方智远3,李正良1,2,涂熙1,2. 异形大跨指廊屋盖脉动风压非高斯特性研究[J]. 振动与冲击, 2023, 42(21): 1-10
WANG Zhisong1,2, YAO Binbin2,FANG Zhiyuan3, LI Zhengliang1,2, TU Xi1,2. Non-Gaussian characteristics of fluctuating wind pressure on irregular large-span roof[J]. Journal of Vibration and Shock, 2023, 42(21): 1-10

参考文献

[1] 沈世钊. 大跨空间结构的发展——回顾与展望 [J]. 土木工程学报, 1998, 31(3): 5-14.
 SHEN Shizhao. Development of Large Span Spatial Structure: Review and Prospect[J]. China Civil Engineering Journal, 1998, 31(3): 5-14.
[2] SONG J, XU W, HU G, et al. Non-Gaussian properties and their effects on extreme values of wind pressure on the roof of long-span structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 106-15.
[3] 孙瑛, 武岳, 林志兴, 等. 大跨屋盖结构风压脉动的非高斯特性 [J]. 土木工程学报, 2007, 40(4): 1-5,12.
 SUN Ying, WU Yue, LIN Zhixing, et al. Non-Gaoste nature of wind pressure pulsation of large-span roof structure[J]. China Civil Engineering Journal, 2007, 40(4): 1-5,12.
[4] KWON D K, KAREEM A. Peak factors for non-Gaussian load effects revisited [J]. Journal of Structural Engineering-Reston, 2011, 137(12): 1611.
[5] KUMAR K S, STATHOPOULOS T. Fatigue analysis of roof cladding under simulated wind loading [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77: 171-83.
[6] BALDERRAMA J, MASTERS F, GURLEY K. Peak factor estimation in hurricane surface winds [J]. Journal of wind engineering and industrial aerodynamics, 2012, 102: 1-13.
[7]  KUMAR K S, STATHOPOULOS T. WIND LOADS ON LOW BUILDING ROOFS: A STOCHASTIC PERSPECTIVE [J]. Journal of Structural Engineering, 2000, 126(8): 944.
[8] 李锦华, 吴春鹏, 陈水生. 矩形结构非高斯风荷载特性研究 [J]. 振动、测试与诊断, 2014, 34(5): 951-9.
 LI Jinhua, WU Chunpeng, CHEN Shuisheng. Study on non-Gaussian wind load characteristics of rectangular structure[J]. Journal of Vibration, Test and Diagnostics, 2014, 34(5): 951-9.
[9] 蒋  磊. 基于实测数据的非高斯随机过程模拟算法研究 [D]; 上海大学, 2019.
 JIANG Lei. Research on non-Gaussian stochastic process simulation algorithm based on measured data[D]; Shanghai University, 2019.
[10] 车兴哲, 张维炎, 袁俊. 两类建筑实测非高斯风压峰值因子对比分析 [J]. 施工技术, 2020, (S01).
 CHE Xingzhe, ZHANG Weiyan, YUAN Jun. Comparative analysis of measured non-Gaussian wind pressure peak factors of two types of buildings[J]. Construction Technology, 2020, (S01).
[11] 杜晓庆, 方立文, 张永平, 等. 切角措施对方柱风压非高斯特性的影响机理 [J]. 哈尔滨工业大学学报, 2021, 53(4): 142-50.
 DU Xiaoqing, FANG Liwen, ZHANG Yongping, et al. Mechanism of non-high struter influence of wind pressure on opposing columns by angle cutting measures[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 142-50.
[12] 黄铭枫, 孙轩涛, 冯鹤, 等. 基于风压谱和Hermite模型的大跨干煤棚风压场数值模拟研究 [J]. 振动与冲击, 2018, 37(23): 111-9.
 HUANG Ming-Feng, SUN Xuan-Tao, FENG He, et al. Numerical simulation of wind pressure field in large-span dry coal shed based on wind pressure spectroscopy and Hermite model[J]. Journal of Vibration and Shock, 2018, 37(23): 111-9.
[13] 吴红华, 米慧敏. 非高斯脉动风压的分形模拟研究 [J]. 湖南大学学报(自然科学版), 2017, 44(7): 59-68.
 WU Honghua, MI Huimin. Fractal simulation of non-Gaussian pulsating wind pressure[J]. Journal of Hunan University (Natural Science Edition), 2017, 44(7): 59-68.
[14] 李寿科, 李寿英, 陈政清, 等. 基于非高斯仿真的风压系数极值计算方法 [J]. 振动与冲击, 2014, (24): 123-32,43.
 LI Shouke, LI Shouying, CHEN Zhengqing, et al. Calculation Method of Wind Pressure Coefficient Extremum Based on Non-Gaussian Simulation[J]. Journal of Vibration and Shock, 2014, (24): 123-32,43.
[15] 林  强, 刘  敏, 杨庆山, 等. 非高斯风压峰值因子估计:基于矩的转换过程法的对比研究 [J]. 工程力学, 2020, 37(4): 78-86.
 LIN Qiang, LIU Min, YANG Qingshan, et al. Non-Gaussian wind pressure peak factor estimation: A comparative study of moment-based conversion process method[J]. Engineering Mechanics, 2020, 37(4): 78-86.
[16] 时 峰, 李秋胜, 陈伏彬, 等. 某可开合大跨屋盖风压特性试验研究 [J]. 建筑结构, 2016, 46(3): 81-8.
 SHI Feng, LI Qiusheng, CHEN Fubin, et al. Experimental study on wind pressure characteristics of a large span roof that can be opened and closed[J]. Building Structure, 2016, 46(3): 81-8.
[17] CHEN Z, LI H, WANG X, et al. Internal and external pressure and its non-Gaussian characteristics of long-span thin-walled domes [J]. Thin-Walled Structures, 2019, 134: 428-41.
[18] GIOFFRE M, GUSELLA V, GRIGORIU M. NON-GAUSSIAN WIND PRESSURE ON PRISMATIC BUILDINGS. I: STOCHASTIC FIELD [J]. Journal of Structural Engineering, 2001, 127(9): 981.
[19] 董  欣, 叶继红. 锥形涡及其诱导下的马鞍屋盖表面风荷载 [J]. 振动与冲击, 2010, 29(10): 61-70.
 DONG Xin, YE Jihong. Conical vortex and its induced wind load on the surface of saddle roof[J]. Journal of Vibration and Shock, 2010, 29(10): 61-70.
[20] 李玉学, 白硕, 杨庆山, 等. 大跨度封闭式柱面屋盖脉动风荷载非高斯分布试验研究 [J]. 建筑结构学报, 2019, 40(7): 62-9.
 LI Yuxue, BAI Shuo, YANG Qingshan, et al. Experimental study on non-Gaussian distribution of pulsating wind load on long-span closed cylindrical roof[J]. Journal of Building Structures, 2019, 40(7): 62-9.
[21] 杨雄伟, 周  强, 李明水, 等. 复杂曲面屋盖脉动风压的非高斯特性及峰值因子研究 [J]. 振动与冲击, 2021, 40(10): 315-22
YANG Xiongwei,ZHOU Qiang,LI Mingshui,et al. Non-Gaussian features and peak factors of fluctuating wind pressures on a complex curved roof[J]. Journal of Vibration and Shock, 2021, 40(10): 315-222.
[22] 闫渤文, 赵  乐, 刘  堃, 等. 大型多指廊屋盖风荷载非高斯特性风洞试验研究 [J]. 湖南大学学报: 自然科学版, 2020, 47(7): 21-8.
 YAN Bowen, ZHAO Le, LIU Kun, et al. Experimental study on non-Gaoster wind tunnel with wind load of large multi-finger corridor roof[J]. Journal of Hunan University: Natural Science Edition, 2020, 47(7): 21-8.
[23] HUANG M. Peak distributions and peak factors of wind-induced pressure processes on tall buildings [M]. High-Rise Buildings under Multi-Hazard Environment. Springer. 2017: 83-104.
[24] 陈  波, 骆盼育, 杨庆山. 测压管道系统频响函数及对风效应的影响 [J]. 振动与冲击, 2014, (3): 130-4.
 CHEN Bo, LUO Panyu, YANG Qingshan. Frequency response function of pressure measurement piping system and its influence on wind effect[J]. Journal of Vibration and Shock, 2014, (3): 130-4.
[25] 中国工程建设标准化协会,GB5009-2012. 建筑结构荷载规范 [S] [D], 2012.
 China Engineering Construction Standardization Association, GB5009-2012. Structural Load Code [S] [D], 2012.
[26] TALAGRAND M. The glivenko-cantelli problem [J]. The Annals of Probability, 1987: 837-70.

PDF(4032 KB)

495

Accesses

0

Citation

Detail

段落导航
相关文章

/