薄壁筒零件切削振动声学特性与实验研究

田美霞,吕凯波,郭富强,胡世杰,李臻,庞新宇

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 176-181.

PDF(2206 KB)
PDF(2206 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 176-181.
论文

薄壁筒零件切削振动声学特性与实验研究

  • 田美霞,吕凯波,郭富强,胡世杰,李臻,庞新宇
作者信息 +

Acoustic characteristics and test study of cutting vibration for thin-walled cylinder parts

  • TIAN Meixia, L Kaibo, GUO Fuqiang, HU Shijie, LI Zhen, PANG Xinyu
Author information +
文章历史 +

摘要

针对薄壁筒工件切削噪声问题,利用理论建模、数值仿真和实验分析相结合的方法,研究切削加工过程中薄壁筒振动声学特性及其与加工表面形貌的内在关联。建立薄壁筒工件辐射声场模型,根据动态切削力、结构振动和切削噪声三者之间的内在关系,数值仿真获得不同激振频率下工件表面、周围空间的声压分布情况。开展薄壁筒工件切削振动实验,分析获得切削过程中系统振动声学响应信号特性与工件表面形貌特征的映射关系;提取切削路径上声压信号振动频率的时变特征,结合工件尺寸和切削用量等参数,重构预测薄壁筒切削加工表面形貌,结果与实测表面具有一致性。研究成果可为智能制造环境下薄壁筒类零件切削表面质量的在线监测或预测提供一种新思路。

Abstract

Aiming at machining noises of thin-walled cylinder workpieces, this paper investigates the vibration acoustic characteristics and its correlation with the machined surface morphology during cutting of thin-walled cylinders with the method which combines theoretical modeling, numerical simulation and experimental analysis. The radiation sound field model of thin-walled cylinder workpieces was firstly established. Based on the internal relationship among dynamic cutting force, structural vibration and cutting noise, the acoustic pressure distribution of the workpiece surface and the surrounding space under different excitation frequencies were obtained by numerical simulation. Then, the cutting chatter experiment of thin-walled cylinder workpieces was carried out to obtain the mapping relationship between the acoustic response characteristics of the system vibration and the surface morphology characteristics of the workpiece. Furthermore, the time-varying characteristics of the vibration frequency of the sound pressure along the cutting path were extracted. Combined with the workpiece dimensional parameters and the cutting parameters, the surface topography of the thin-walled cylinder was therefore reconstructed. The results show consistency with the measured surface. The research may provide a new idea for on-line monitoring or prediction of machining surface quality of thin-walled cylinder parts in intelligent manufacturing.

关键词

薄壁筒 / 切削颤振 / 声学特性 / 表面形貌

Key words

thin-walled cylinder / cutting chatter / acoustic characteristics / surface morphology

引用本文

导出引用
田美霞,吕凯波,郭富强,胡世杰,李臻,庞新宇. 薄壁筒零件切削振动声学特性与实验研究[J]. 振动与冲击, 2023, 42(21): 176-181
TIAN Meixia, L Kaibo, GUO Fuqiang, HU Shijie, LI Zhen, PANG Xinyu. Acoustic characteristics and test study of cutting vibration for thin-walled cylinder parts[J]. Journal of Vibration and Shock, 2023, 42(21): 176-181

参考文献

[1] SIDDHPURA M, PAUROBALLY R. A review of chatter vibration research in turning[J]. International Journal of Machine Tools and Manufacture,2012,61:27–47.
[2] 王志学,刘献礼,李茂月,等. 切削加工颤振智能监控技术[J]. 机械工程学报,2020,56(24):1-23.
WHANG Zhixue, LIU Xian-li, LI Maoyue, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020,56 (24): 1-23.
[3] WEGENER K, BLEICHER F, HEISEL U, et al. Noise and vibrations in machine tools[J]. CIRP Annals,2021,70(2): 611-633.
[4] MEHDI K, RIGAL J F, PLAY D. Dynamic behavior of a thin ⁃ walled cylindrical workpiece during the turning ⁃ cutting process: Part 2 experimental approach and validation[J].Journal of Manufacturing Science Engineering, 2002,124 (3):569⁃580.
[5] SUN S P, CHU S M, CAO D Q. Vibration characteristics of thin rotating cylindrical shells with various boundary conditions[J]. Journal of Sound and Vibration,2012,331 (18):4170⁃4186.
[6] GERASIMENKP A, GUSKOV M, GUSKOV A, et al. Analytical modeling of a thin ⁃ walled cylindrical workpiece during the turning process. Stability analysis of a cutting process[J]. Journal of Vibroengineering,2017, 19(8):5825⁃ 5841.
[7] 仇健. 基于动态切削过程仿真的外圆车削稳定性判定[J]. 机械工程学报,2019,55(03):208-218.
QIU Jian. Research on cylindrical turning process stability judgment based on dynamic cutting Process[J]. Journal of Mechanical Engineering, 2019,55(03):208-218.
[8] LU K B, LIAN Z S, GU F S, et al. Model-based chatter stability prediction and detection for the turning of a flexible workpiece[J]. Mechanical Systems and Signal Processing, 2018,100:814-826.
[9] 巫永琳. 薄壁内腔类零件车削振动响应、稳定性及表面形貌预测研究[D]. 山东:山东大学,2020.
WU Yonglin. Dynamic responses, stability and surface topography prediction in the process of turning thin-  walled inner cavity workpieces[D]. Shandong, Shandong University,2020.
[10] 刘一沛,吕凯波,张志浩,等. 时变因素作用下薄壁筒工件车削振动特性与实验[J]. 航空动力学报,2022,37 (03):600-606.
LIU Yipei,LU Kaibo,ZHANG Zhihao, et al. Vibration characteristics and experiments of thin⁃walled cylinders in turning process with time⁃varying factors[J]. Journal of Aerospace Power, 2022,37 (03):600-606.
[11] LU K B, GU J X, FAN H, et al. Acoustics based monitoring and diagnostics for the progressive deterioration of helical gearboxes[J]. Chinese Journal of Mechanical Engineering, 2021, 34(4): 82.
[12] DELIO T, TLUSTY J, SMITH S. Use of audio signals for chatter detection and control[J]. ASME Journal Engineering for Industry,1992,114:146-157.
[13] 吴雅,柯石求,张启林,等. 机床切削噪声动态特性的试验研究[J]. 华中理工大学学报,1991(S2): 69-74.
WU Ya, KE Shiqiu, ZHANG Qilin, et al. Experimental study on dynamic characteristics of machine tool cutting noise [J]. Journal of Huazhong University of Science and Technology,1991(S2): 69-74.
[14] 吴雅,柯石求,杨叔子. 金属切削机床切削噪声的动力学研究[J]. 机械工程学报,1995(05):76-85.
WU Ya, KE Shiqiu, YANG Shuzi. Dynamics research on cutting noise of metal cutting machine tool [J]. Journal of Mechanical Engineering,1995(05):76-85.
[15] 郭鹏. 切削加工过程中声音信号的实验研究[D]. 山东:山东大学,2007.
GUO Peng. Experimental investigation of sound signals during machining process,2007.
[16] CAO H R, YUE Y T, Chen X F, et al. Chatter detection in milling process based on synchrosqueezing transform of sound signals[J]. The International Journal of Advanced Manufacturing Technology,2017,89(9-12):2747-2755.
[17] 吕凯波,娄培生,谷丰收,等. 基于声压信号能量峭度的早期切削颤振预警技术研究[J]. 振动与冲击,2021,40(20):50-55.
LU Kaibo, LOU Peisheng, GU Fengshou, et al. Study on early chatter monitoring based on energy kurtosis index of acoustic signals[J]. Journal of Vibration and Shock, 2021,40(20):50-55.
[18] 王宇,谷月,李晖,等. 高速旋转薄壁圆柱壳的行波共振特性研究[J]. 振动与冲击,2016, 35(05): 222-227.
WANG Yu, GU Yue, LI Hui, et al. Travelling wave resonance characteristics of a high-speed rotating thin cylindrical shell[J]. Journal of Vibration and Shock, 2016, 35(05):222-227.
[19] 王能茂,王延荣. 转动薄壁圆柱筒振动特性:有限元法与解析解的对比[J]. 航空动力学报,2017,32(3):689⁃696.
WANG Nengmao, WANG Yanrong. Vibration characteristics of rotating thin-walled cylindrical shells:comparison of finite element method with analytical solution[J]. Journal of Aerospace Power,2017,32(3):689⁃ 696.
[20] 王培. 轴承声振耦合算法与波纹度振动声学特征仿真研究[D]. 重庆:重庆大学,2012.
WANG Pei. Vibro-acoustic coupling algorithm of bearing and simulation research on vibration and acoustic features with bearing waviness[D]. Chongqing, Chongqing University,2012.
[21] LU K B, WANG Y Q, GU F S, et al. Dynamic modeling and chatter analysis of a spindle-workpiece-tailstock system for the turning of flexible parts[J]. The International Journal of Advanced Manufacturing Technology,2019, 104(5): 3007-3015.
[22] LORONG P, LARUE A, DUARTE P A. Dynamic study of thin wall part turning[J]. Advanced Materials Research, 2011, 223:591-599.

PDF(2206 KB)

314

Accesses

0

Citation

Detail

段落导航
相关文章

/