TSL材料防护作用下砂岩动态抗拉性能的试验研究

王世鸣1,熊咸瑞1,王嘉琪1,颜世军1,吴秋红2,翁磊3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 192-199.

PDF(4341 KB)
PDF(4341 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 192-199.
论文

TSL材料防护作用下砂岩动态抗拉性能的试验研究

  • 王世鸣1,熊咸瑞1,王嘉琪1,颜世军1,吴秋红2,翁磊3
作者信息 +

Test study on dynamic anti-tension performance of sandstone under protection of TSL material

  • WANG Shiming1, XIONG Xianrui1, WANG Jiaqi1, YAN Shijun1, WU Qiuhong2, WENG Lei3
Author information +
文章历史 +

摘要

TSL(Thin Spray-On Liner)材料作为一种新型的支护材料,已经开始运用于矿山巷道等工程支护。TSL材料在支护过程中不可避免受到爆破开挖等动载荷的扰动。因此,本文对TSL作用下砂岩的静态和动态抗拉性能展开试验研究,试验考虑了TSL与砂岩的三种接触面(光滑型和两种粗糙型接触面),每一接触面设置了三组TSL的支护厚度(1mm,3mm和5mm),其中动载试验采用超高速数字图像相关(DIC)试验系统记录动态拉伸破坏过程和试样表面应变场变化过程。研究表明,静载和动载下,TSL材料对砂岩的抗拉强度和抗拉变形均有明显的提高作用。在静载下,随着TSL厚度和接触面粗糙度的增加,砂岩抗拉强度明显提升,次生裂纹减少,当TSL厚度超过3mm后,随着厚度的增加,抗拉强度增加速率降低;在动载下,当接触面为光滑型时,只有当施加TSL的厚度达到5mm,试样的抗拉强度和变形能力才有较好的提升,而当接触面为粗糙型时,支护效果受接触面粗糙度、TSL厚度和加载率三者共同影响,TSL能延缓砂岩起裂时间,当加载率超过一定值后,粗糙度和TSL厚度的增加对支护效果提升作用有所下降。

Abstract

While TSL (Thin Spray-On Liner) material has been used in engineering support such as mine roadways, the TSL is still inevitably disturbed by the dynamic loads (e.g., blasting loading) during excavation. It is for this reason that the study was proposed to reveal the static and dynamic tensile properties of the sandstone with the TSL. In this study, the effect of the contact surfaces on the smooth and rough contact surfaces between the TSL and the sandstone was examined. Also, the impact of the TSL thicknesses at 1 mm, 3 mm and 5 mm was investigated. An ultra-high-speed digital image correlation (DIC) was used to record dynamic tensile failure process. The results show that the TSL improved the tensile strength and the tensile deformation of the sandstone under the static and dynamic loads significantly. Under a static load, the tensile strength of the sandstone increased significantly with the increase of the TSL thickness and contact surface roughness, and the secondary cracks decreased. When the TSL thickness exceeded 3 mm, the increase rate of the tensile strength decreased with the increase of the thickness. Under a dynamic load, the tensile strength and deformation capacity of the specimen were both improved on the smooth contact surface only at a thickness of TSL of 5 mm. When the contact surface was rough, the parameters affecting the supporting effect included contact surface roughness, TSL thickness and loading rate. The TSL was able to delay the initiation time of sandstone cracking. When the loading rate was too large, further increasing the roughness and TSL thickness did not improve the support effect significantly.

关键词

TSL / 砂岩 / 动载 / 巴西劈裂 / DIC

Key words

TSL / sandstone / dynamic load / Brazilian split / DIC

引用本文

导出引用
王世鸣1,熊咸瑞1,王嘉琪1,颜世军1,吴秋红2,翁磊3. TSL材料防护作用下砂岩动态抗拉性能的试验研究[J]. 振动与冲击, 2023, 42(21): 192-199
WANG Shiming1, XIONG Xianrui1, WANG Jiaqi1, YAN Shijun1, WU Qiuhong2, WENG Lei3. Test study on dynamic anti-tension performance of sandstone under protection of TSL material[J]. Journal of Vibration and Shock, 2023, 42(21): 192-199

参考文献

[1] 何满潮,谢和平,彭苏萍,等. 深部开釆岩体力学研究[J] .岩石力学与工程学报. 2005,24 (16): 2803-2813.
HE Manchao, XIE Hepeng, PENG Suping, et al. Study On Rock Mechanics In Deep Mining Engineering[J]. Chinese Journal of Rock Mechanics and Engineering. 2005,24 (16): 2803-2813.
[2] 张有天, 周建平. 水电站大型地下工程建设的新进展[J]. 水力发电, 2004, 30 (12):64-68.
ZHANG Youtian, ZHOU Jianping. New progress made in construction of large works of hydropower station[J].Water Power, 2004, 30 (12):64-68.
[3] 李夕兵, 周健, 王少锋,等. 深部固体资源开采评述与探索[J].中国有色金属学报,2017 (6): 1236-1262.
LI Xibing, ZHOU Jian, WANG Shaofeng, et al. Review and exploration of deep solid resource exploitation[J]. Transactions of Nonferrous Metals Society of China,2017 (6): 1236-1262.
[4] LUO Yong, GONG Fengqiang, LIU Dongqiao, WANG Shanyong, SI Xuefeng. Experimental simulation analysis of the process and failure characteristics of spalling in D-shaped tunnels under true-triaxial loading conditions[J]. Tunnelling and underground space technology, 2019, 90(AUG.): 42-61.
[5] 宫凤强, 罗勇, 刘冬桥. 深部直墙拱形隧洞围岩板裂破坏的模拟试验研究[J].岩土工程学报,2019,41(06):1091-1100.
GONG Feng-qiang, LUO Yong, LIU Dong-qiao. Simulation tests on spalling failure in deep straight-wall-top-arch tunnels [J]. Chinese Journal of Geotechnical Engineering, 2019,41(06):1091-1100.
[6] WANG Shiming, ZHOU Jian, LI Chuanqi. Et al. Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques[J]. Journal of Central South University. 2021, 28, 527-542
[7] 于学馥. 地下工程围岩稳定分析[M]. 煤炭工业出版社, 1983.
YU Xuefu. Stability analysis of surrounding rock in underground engineering[M]. China Coal Industry Publishing House, 1983.
[8] 康红普, 王金华, 林健. 高预应力强力支护系统及其在深部巷道中的应用[J]. 煤炭学报, 2007, 32(12): 1233-1238.(KANG Hongpu, WANG Jinhua, LIN Jian. High pretensioned stress and in tensive bolting system and its application in deep roadways[J].Journal Of China Coal Society, 2007, 32(12): 1233-1238.)
[9] 高明涛. 沿空留巷围岩结构模型的建立及其稳定性分析[J]. 地下空间与工程学报, 2012, 8(5): 904-909.
GAO Mingtao. Establishment of the Gob-side Entry Surrounding Rock Model and Analysis on Its Stability[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(5): 904-909.
[10] OZTURK H, GUNER D. Failure analysis of thin spray-on liner coated rock cores[J]. Engineering Failure Analysis, 2017, 79, 25-33.
[11] QIAO Qiuqiu, NEMCIK J, PORTER I, BAAFI E. Laboratory tests on thin spray-on liner penetrated rock joints in direct shear[J]. Rock Mechanics & Rock Engineering, 2015, 48(5), 2173-2177.
[12] MPUNZI P, MASETHE R, RIZWAN M, et al. Enhancement of the tensile strengths of rock and shotcrete by thin spray-on liners[J]. Tunnelling and underground space technology, 2015,49(jun.), 369-375.
[13] LI Zecheng , NOCELLI B, SAYDAM S. Effect of rock strength and surface roughness on adhesion strength of thin spray-on liners[J]. International Journal of Rock Mechanics & Mining Sciences. 2017,91, 195-202.
[14] OZTURK H, GUNER D. Laboratory and distinct element analysis of the deformability behaviour of thin spray-on liners[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123, 104118.
[15] GUNER D, GOLBASI O, OZTURK H. Generic creep behavior and creep modeling of an aged surface support liner under tension[J]. Journal of rock mechanics and geotechnical engineering, 2022, 14, 377-384.
[16] PLESSIS MD, MALAN DF. Investigating the use of polymer-modified cementitious thin spray-on liners as stope face support[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142, 104728.
[17] ARCHIBALD JF, DIRIGE PA. Development of thin, spray-on liner and composite super-liner area supports for damage mitigation in blast and rock-burst induced rock failure events[J]. WIT Transactions on The Built Environment, 2006, 87:1-6.
[18] ZHOU Zilong, LI Xibing, ZOU Yang, et al. Dynamic Brazilian tests of granite under coupled static and dynamic loads[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 495-505.
[19] 方新宇,许金余,刘石,陈腾飞,王鹏.岩石动态劈裂试验的最优试件尺寸分析[J].振动与冲击,2014,33(21):73-79.
FANG Xin-yu, XU Jin-yu,, LIU Shi et al. Optimal specimen size analysis for rock dynamic splitting tests
[J]. Journal of vibration and shock, 2014,33(21):73-79.
[20] GONG Fengqiang, WU Wuxing, ZHANG Le. Brazilian disc test study on tensile strength-weakening effect of high pre-loaded red sandstone under dynamic disturbance[J]. Journal of Central South University, 2020, 27(10):2 899-2 913.
[21] 张华,郑凯,王雷.混凝土直切槽平台巴西圆盘冲击劈裂拉伸断裂特性试验和数值模拟研究[J].振动与冲击,2019,38(17):149-155+204.
ZHANG Hua, ZHENG Kai, WANG Lei. Tests and numerical simulation for splitting tensile fracture properties of CSTFBD concrete specimen under impact loading[J], Journal of vibration and shock, 2019,38(17):149-155+204.
[22] 李二强, 冯吉利, 张龙飞, 等. 水–岩及风化作用下层状炭质板岩巴西劈裂试验研究[J].岩土工程学报,2021,43(02):329-337.
LI Er-qiang,, FENG Ji-li, ZHANG Long-fei et al. Brazilian tests on layered carbonaceous slate under water-rock interaction and weathering[J]. Chinese Journal of Geotechnical Engineering, 2021,43(02):329-337.
[23] 王江波,李汶峰,任文科,等. SHPB入射波相似律与整形技术的试验与数值研究[J].振动与冲击,2022,41(06):169-176+221.
WANG Jiangbo,LI Wenfeng,REN Wenk, et al. Experimental and numerical study on the incident pulse similarity law and pulse shaping technique in SHPB test[J]. Journal of vibration and shock, 2022,41(06):169-176+221.
[24] ZHOU Yingxin, XIA Kaiwen, LI Xibing, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49(1): 105-112.

PDF(4341 KB)

Accesses

Citation

Detail

段落导航
相关文章

/