基于深度迁移学习的柴油机故障诊断研究

宋业栋1,马光伟1,裴国斌2,张俊红2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 219-226.

PDF(2467 KB)
PDF(2467 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 219-226.
论文

基于深度迁移学习的柴油机故障诊断研究

  • 宋业栋1,马光伟1,裴国斌2,张俊红2,3
作者信息 +

Diesel engine fault diagnosis based on deep transfer learning

  • SONG Yedong1,MA Guangwei1,PEI Guobin2,ZHANG Junhong2,3
Author information +
文章历史 +

摘要

得益于大数据和人工智能的高速发展,数据驱动的智能故障诊断方法受到广泛关注。然而,在柴油机故障数据稀缺的情况下,传统神经网络训练容易出现过拟合且网络泛化能力差。为解决上述问题,提出一种基于深度迁移学习的小样本故障诊断方法。构建一种适用于柴油机原始振动信号的宽卷积核卷积长短期记忆神经网络,来提高故障数据特征提取和抗噪的能力,另外从原始数据自动提取特征,增强特征学习的智能性。进一步采用迁移学习方案,将大型标签源域数据的诊断知识迁移到目标域网络上,改进网络在目标域任务小样本条件下的学习和分类能力。在跨故障域和跨设备域迁移任务上进行算法评估,并与传统深度神经网络进行比较,验证了所提方法可有效改进小样本诊断性能。

Abstract

Data-driven intelligent fault diagnosis has lately attracted extensive interest, which deeply relates to the rapid development of big data and deep learning. However, when available fault data is limited, deep learning training is prone to overfitting, and the generalization ability of the trained network is affected. In this paper, an intelligent fault diagnosis method based on deep transfer learning is proposed to solve the problem of small samples. Construct a wide convolution kernel convolutional long short-term memory neural network to improve the feature extraction ability of diesel engine low signal-to-noise ratio fault data, and automatically extract features from the original data to enhance the intelligence of feature learning. A transfer learning scheme is further adopted to transfer the diagnostic knowledge of large-scale labeled source domain data to the target domain network, and improve the learning and classification capabilities of the network in the target domain tasks with small samples. Algorithm evaluation on cross-fault domain and cross- equipment domain, and comparison with traditional deep neural networks, verifies that the proposed transfer learning based on WKCL can effectively improve the performance of small sample diagnosis.

关键词

迁移学习 / 柴油机 / 故障诊断 / 小样本 / 抗噪性

Key words

transfer learning / diesel engine / fault diagnosis / small sample / noise immunity

引用本文

导出引用
宋业栋1,马光伟1,裴国斌2,张俊红2,3. 基于深度迁移学习的柴油机故障诊断研究[J]. 振动与冲击, 2023, 42(21): 219-226
SONG Yedong1,MA Guangwei1,PEI Guobin2,ZHANG Junhong2,3. Diesel engine fault diagnosis based on deep transfer learning[J]. Journal of Vibration and Shock, 2023, 42(21): 219-226

参考文献

[1] 王凤利, 邢辉, 邱赤东, 等. 基于改进自适应EEMD的柴油机气缸磨损诊断[J]. 内燃机学报, 2017, 35(01): 89-95.
WANG Fengli, XING Hui, QIU Chidong, et al. Diesel engine cylinder wear diagnosis based on improved adaptive EEMD[J]. Journal of Internal Combustion Engine, 2017, 35(01): 89-95.
[2] 蒋佳炜, 胡以怀, 柯赟, 等. 基于小波包特征提取和模糊熵特征选择的柴油机故障分析[J]. 振动与冲击, 2020, 39(04): 273-277.
JIANG Jiawei, HU Yihuai, KE Yun, et al. Diesel engine fault analysis based on wavelet packet feature extraction and fuzzy entropy feature selection[J]. Journal of Vibration and Shock, 2020, 39(04): 273-277.
[3] XU X, ZHAO Z, XU X, et al. Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models[J]. Knowledge-based Systems, 2020, 190(105324).
[4] HUANG R, LIAO Y, ZHANG S, et al. Deep decoupling convolutional neural network for intelligent compound fault diagnosis[J]. IEEE Access, 2018, 7: 1848-1858.
[5] SUN C, MA M, ZHAO Z, et al. Sparse deep stacking network for fault diagnosis of motor[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3261-3270.
[6] 张永祥, 王宇, 姚晓山. 基于加窗和卷积神经网络的柴油机拉缸故障诊断[J]. 车用发动机, 2019(06): 84-89.
ZHANG Yongxiang, WANG Yu, YAO Xiaoshan. Diesel engine cylinder pulling fault diagnosis based on windowing and convolutional neural network[J]. Automotive Engine, 2019(06): 84-89.
[7] JIANG Z, LAI Y, ZHANG J, et al. Multi-factor operating condition recognition using 1d convolutional long short-term network[J]. Sensors (Basel, Switzerland), 2019, 19(24): 5488.
[8] 张康, 陶建峰, 覃程锦, 等. 随机丢弃和批标准化的深度卷积神经网络柴油机失火故障诊断[J]. 西安交通大学学报, 2019, 53(08): 159-166.
ZHANG Kang, TAO Jianfeng, QIN Chengjin, et al. Diesel engine misfire fault diagnosis based on random discard and batch standardization with deep convolutional neural network[J]. Journal of Xi'an Jiaotong University, 2019, 53(08): 159-166.
[9] TAMILSELVAN P, WANG Y, WANG P. Structural health diagnosis using deep belief network based state classification[J]. IEEE Aerospace Conference Proceedings, 2012.
[10] SAK H, SENIOR A, BEAUFAYS F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[J]. computer science, 2014.
[11] INCE T, KIRANYAZ S, EREN L, et al. Real-time motor fault detection by 1d convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11).
[12] YU D, CHEN Z M, XIAHOU K S, et al. A radically data-driven method for fault detection and diagnosis in wind turbines[J]. International Journal of Electrical Power & Energy Systems, 2018, 99(JUL.): 577-584.
[13] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014.
[14] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 051(021): 49-56.
LEI Yaguo, JIA Feng, ZHOU Xin, et al. A deep learning-based method for machinery health with big data[J]. Journal of Mechanical Engineering, 2015, 051(021): 49-56.
[15] 侯文擎. 基于改进堆叠降噪自编码网络的轴承故障诊断研究[D]. 广州: 华南理工大学, 2017.
HOU Wenqing. Bearing fault diagnosis based on improved stack denoising autocoding network[D]. Guangzhou: South China University of Technology, 2017.
[16] JANSSENS O, WALLE R, LOCCUFIER M, et al. Deep learning for infrared thermal image based machine health monitoring[J]. IEEE ASME Transactions on Mechatronics, 2018, 23(1):151-159.
[17] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11: 3371–3408.
[18] THIRUKOVALLURU R, DIXIT S, SEVAKULA R K, et al. Generating feature sets for fault diagnosis using denoising stacked auto-encoder [C]. 2016 IEEE International Conference on Prognostics and Health Management, Ottawa, Canada, 2016: 1-7.
[19] LU Chen, WANG Zhenya, QIN Weili, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130: 377–388.
[20] JIA Feng, LEI Yaguo, GUO Liang, et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines [J] .Neurocomputing, 2018, 272: 619-628.
[21] MENG Zong, ZHAN Xuyang, LI Jing, et al. An enhancement denoising autoencoder for rolling bearing fault diagnosis[J]. Measurement, 2018, 130: 448-454.
[22] SUN Wenjun, SHAO Siyu, ZHAO Rui, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J]. Measurement, 2016, 89: 171-178.
[23] LIU Han, ZHOU Jianzhong, XU Yanhe, et al. Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks[J]. Neurocomputing, 2018, 315: 412-424.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E, Imagenet classification with deep convolutional neural networks[J], Communications of the ACM, 2017(60): 84-90.
[25] SAK H, SENIOR A, and BEAUFAYS F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]. The 15th Annual Conference of the International Speech Communication Association, Singapore, 2014: 338-342.
[26] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]. arXiv preprint arXiv:1602.07261, 2016.
[27] XU B, WANG N, CHEN T, et al. Empirical Evaluation of Rectified Activations in Convolutional Network[J]. Computer ence, 2015.
[28] ZHANG W, PENG G, LI C, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017,17(3): 425.
[29] 刘昱. 基于振动分析的柴油机燃油系统与配气机构故障诊断研究[D]. 天津: 天津大学, 2016.
LIU Yu. Fault diagnosis of diesel engine fuel system and valve train based on vibration analysis[D]. Tianjin: Tianjin University, 2016.
[30] LOU X, LOPARO K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mechanical Systems & Signal Processing. 2004, 18, 1077–1095.
[31] AMAR M, GONDAL I, WILSON C. Vibration spectrum imaging: A novel bearing fault classification approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502
 

PDF(2467 KB)

Accesses

Citation

Detail

段落导航
相关文章

/