输电线路运维过程中观测到翻转现象,严重影响线路运行安全。本文依据架空导线悬链线模型,得出导线的沿线应力。将分裂导线翻转后的绞合区间简化为圆柱螺旋线,建立了分裂导线的翻转几何与力学模型,推导了分裂导线翻转后子导线长度和张力,给出了分裂导线翻转自恢复力矩的简化理论计算公式。基于有限元方法对案例线路进行翻转过程的准静态模拟,将有限元分析结果和理论计算得到的分裂导线翻转自恢复力矩进行对比分析,最大相对误差为8.44%,表明翻转自恢复力矩简化理论计算公式具有一定的准确性。进一步利用简化计算公式研究了分裂数、绞合角度、次档距、分裂间距、绞合位置等线路本体参数对分裂导线翻转自恢复能力的影响。结果表明:输电线路分裂数越多、绞合角度越大、次档距越小、分裂间距越大、绞合位置越靠近翻转间隔棒时,线路翻转自恢复能力越强,线路发生翻转失效概率越低。该简化计算公式为输电线路设计提供了理论依据和参考。
Abstract
Turnover phenomenon is observed on transmission lines, which seriously affected the safety of line operation. Based on the catenary model of overhead conductor, the stress along the conductor is obtained. The twisted section of the bundle conductor is simplified as a cylindrical spiral, the turnover geometric and mechanical model of the bundle conductor is established, the length and tension of the sub conductor after the bundle conductor is turned over are derived, the simplified theoretical calculation formula of the turnover self-recovery moment of the bundle conductor is given. Based on the finite element method, the quasi-static simulation of the case line turnover process is carried out, and the finite element analysis results are compared with the theoretical calculation of the turnover self-recovery moment of the bundle conductor. The maximum relative error is 8.44%, which indicates that the simplified theoretical calculation formula of the turnover self-recovery moment was correct. Based on the simplified calculation formula, the influence of split number, twisting angle, sub-span, split spacing, twisting position and other line parameters on the turnover self-recovery ability of the bundle conductor is further studied. The results show that the more the number of splits, the greater the twisting angle, the smaller the sub-span, the greater the split spacing, and the closer the twisting position is to the turnover spacer, the greater the line turnover self-recovery moment, the stronger the turnover self-recovery ability of the line and the lower the probability of line turnover. The simplified calculation formula provides theoretical basis and reference for transmission line design.
关键词
分裂导线 /
翻转 /
自恢复力矩 /
有限元分析
{{custom_keyword}} /
Key words
bundle conductor /
turnover /
self-recovery moment /
finite element analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘小会, 郝忠, 严波. 四分裂导线翻转理论研究[J]. 应用力学学报, 2016, 33(4): 613-619+737.
Liu Xiaohui, Hao Zhong, Yan Bo. Theoretical study on turnover of quad-bundled conductor[J]. Chinese Journal of Applied Mechanics, 2016, 33(4): 613-619+737.
[2] 赵彬, 程永峰, 王景朝, 等. 2015年初湖北架空线路覆冰舞动灾害原因的理论分析与应对措施[J]. 振动与冲击, 2017, 36(10): 93-97.
Zhao Bin, Cheng Yongfeng, Wang Jingchao, et al. Theoretical analysis and countermeasures on the galloping of iced overhead transmission lines in Hubei in early 2015[J]. Journal of Vibration and Shock, 2017, 36(10): 93-97.
[3] 楼文娟, 陈思然, 解健. 多分裂导线扭矩-扭转角关系及防翻转研究[J]. 工程力学, 2020, 37(8): 32-39+54.
Lou Wenjuan, Chen Siran, Xie Jian. Torque and rotation angle relationship and anti-twisting research of multi-bundled conductors[J]. Engineering Mechanics, 2020, 37(8): 32-39+54.
[4] 解健, 马伦, 杨晓辉, 等. 分裂导线扭转特性缩尺模型试验与分析[J]. 电工技术, 2019(15): 122-125.
Xie Jian, Ma Lun, Yang Xiaohui, et al. Scale model test and analysis of torsional property of bundle conductor[J]. Electric Engineering, 2019(15): 122-125.
[5] Nigol O, Buchan P G. Conductor Galloping-Part II Torsional Mechanism [J]. IEEE Transactions on Power Apparatus & Systems, 1981, PAS-100(2): 708-720.
[6] Wang J, Lilien J. Overhead electrical transmission line galloping: a full multi-span 3-DOF model, some applications and design recommendations[J]. Power Delivery IEEE Transactions on, 1998, 13(3): 909-916.
[7] Wang J, Lilien J L. A new theory for torsional stiffness of multi-span bundle overhead transmission lines[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1405-1411.
[8] Keutgen, R, Lilien J L, Yukino T. Transmission line torsional stiffness: confrontation of field-tests line and finite element simulations[J]. IEEE Transactions on Power Delivery, 1999, 14(2): 567-573.
[9] 谢增, 刘吉轩, 刘超群, 等. 架空输电线路分裂导线扭转刚度计算新方法[J]. 西安交通大学学报, 2012, 46(2): 100-105+140.
Xie Zeng, Liu Jixuan, Liu Chaoqun, et al. New calculating algorithm for torsional stiffness of bundle overhead transmission lines[J]. Journal of Xi'an Jiaotong University, 2012, 46(2): 100-105+140.
[10] 马伦, 张博, 伍川, 等. 输电线等效刚度计算方法及舞动分析[J]. 应用力学学报, 2020, 37(5): 2094-2104+2326-2327.
Ma Lun, Zhang Bo, Wu Chuan, et al. Calculation method for equivalent stiffness of transmission lines and analysis of galloping[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 2094-2104+2326-2327.
[11] 姚文军, 龚延兴. 500kV超高压输电线路导线翻转问题浅析[J]. 华北电力技术, 2004(3): 16-34.
Yao Wenjun, Gong Yanxing. Study on conductors turn over problem in 500kV EHV power transmission lines[J]. North China Electric Power, 2004(3): 16-17.
[12] 史磊, 李永贤, 曹志全. 750kV线路六分裂导线翻转扭绞技术分析及防范治理措施[J]. 电网与清洁能源, 2011, 27(4): 19-21+25.
Shi Lei, Li Yongxian, Cao Zhiquan. Technical analysis and preventive measures for turnover and twisting of 6-bundle conductor for 750kV transmission line[J]. Power System and Clean Energy, 2011, 27(4): 21-22.
[13] 刘小会, 张文斌, 方元庆, 等. 连续档导线面内及面外等效刚度研究[J]. 应用力学学报, 2015, 32(5): 756-761+893.
Liu Xiaohui, Zhang Wenbin, Fang Yuan-qing, et al. The research for in-plane and out-plane equivalent stiffness of continuous span transmission lines[J]. Chinese Journal of Applied Mechanics, 2015, 32(5): 756-761+893.
[14] 赵腾飞, 包华, 张雷, 等. 考虑耐张串效应的特高压线路导线弧垂的理论解[J]. 科学技术与工程, 2020, 20(30): 12512-12519.
Zhao Tengfei, Bao Hua, Zhang Lei, et al. Theoretical solution of conductor sag in ultra high voltage transmission line considering tension string effect[J]. Science Technology and Engineering, 2020, 20(30): 12512-12519.
[15] 邵天晓. 架空送电线路的电线力学计算[M]. 北京: 中国电力出版社, 2003.
Shao Tianxiao. Calculation of wire mechanics for overhead power transmission lines[M]. Beijing: China Electric Power Press, 2003.
[16] 唐利芹, 叶福民, 单怡超, 等. 变导程螺旋线及其展开图研究[J]. 中国制造业信息化, 2007(19): 139-142.
Tang Liqin, Ye Fuming, Shan Yichao, et al The Study on Helical line with variational screw-pitch and its spread drawing[J]. Machine Design and Manufacturing Engineering, 2007(19): 139-142.
[17] 王金锁, 刘美瑶, 岳华刚, 等. 不同覆冰形式的导线脱冰动力响应研究[J]. 振动与冲击, 2021, 40(20): 193-199.
Wang Jinsuo, Liu Meiyao, Yue Huagang, et al. A study of dynamic response characteristic of ice-shedding on conductors for overhead lines under different ice-coating types[J]. Journal of Vibration and Shock, 2021, 40(20): 193-199.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}