一种航天用磁性液体吸振器的减振性能研究

姚杰1,李辉1,李德才1,2,赵心语1,李振坤1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 298-305.

PDF(2752 KB)
PDF(2752 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 298-305.
论文

一种航天用磁性液体吸振器的减振性能研究

  • 姚杰1,李辉1,李德才1,2,赵心语1,李振坤1
作者信息 +

Damping performance of a magnetic liquid vibration absorber for spacecrafts

  • YAO Jie1, LI Hui1, LI Decai1,2, ZHAO Xinyu1, LI Zhenkun1
Author information +
文章历史 +

摘要

为抑制航天器大型柔性结构的低频振动,研究了一种基于磁性液体悬浮原理的新型吸振器。建立了该吸振器的动力学模型,推导了磁性液体悬浮力和粘性阻尼力方程。针对方程中磁性液体的界面求解问题,根据磁性液体的伯努利方程和界面方程,分析了磁性液体界面与磁场强度的关系,建立了磁性液体界面、悬浮力和粘性阻尼力的仿真方法。通过仿真和实验研究了壳体高度对磁性液体悬浮力和粘性阻尼力的影响规律,分析了仿真与实验的差异。基于铜板的自由振动实验,验证了该吸振器抑制低频自由振动的有效性。结果表明,该吸振器具有较好的线性特征,对1.1Hz、5mm的自由振动时间最高可缩减85%。

Abstract

A vibration absorber based on the magnetic fluid's levitation principle was studied to suppress the low frequency vibration of sizeable, flexible spacecraft structures. The dynamic model of the absorber was established, and the equations of magnetic fluid's buoyant forces and viscous damping forces were derived. According to the magnetic fluid's Bernoulli equation and interface equation, the relationship between the magnetic fluid interface and magnetic field strength was analyzed. Simulation methods were established to calculate magnetic fluid interfaces, buoyant forces, and viscous damping forces. The results show that buoyant and viscous damping forces have good linear characteristics. The influence of shell heights on the magnetic fluid's levitation and viscous damping forces was studied by simulations and experiments, and the difference between simulations and experiments was analyzed. Based on the copper plate's free vibration experiment, the vibration absorber's effectiveness in suppressing low frequency free vibration was verified. Using the vibration absorber, the free vibration of 1.1Hz and 5mm can reduce the vibration time by 85%.

关键词

磁性液体 / 减振器 / 径向回复力 / 减振性能

Key words

magnetic fluid / vibration absorber / buoyant force / damping performance

引用本文

导出引用
姚杰1,李辉1,李德才1,2,赵心语1,李振坤1. 一种航天用磁性液体吸振器的减振性能研究[J]. 振动与冲击, 2023, 42(21): 298-305
YAO Jie1, LI Hui1, LI Decai1,2, ZHAO Xinyu1, LI Zhenkun1. Damping performance of a magnetic liquid vibration absorber for spacecrafts[J]. Journal of Vibration and Shock, 2023, 42(21): 298-305

参考文献

[1] Potma O G, Lampaert S G, Ostayen R A V. Method for transport of ferrofluid in a liquid contactless rotational seal[J]. Sealing Technology, 2021, 2021(1):4-9.
[2] 朱姗姗, 李德才, 崔红超,等. 空间飞行器磁性液体阻尼减振器减振性能的研究[J]. 振动与冲击, 2017, 36(10):6.
ZHU Shanshan, LI Decai, CUI Hongchao, et al. Study on damping performance of magnetic liquid damping shock absorber for space vehicle[J]. Journal of Vibration and Shock, 2017, 36(10):6.
[3] Huang X, Zhang X, Wang Y. Numerical simulation of ferrofluid-lubricated rough elliptical contact with start-up motion[J]. Applied Mathematical Modelling, 2021, 91(2021):232-260.
[4] 赵心语,姚杰,刘嘉盟,等.一种高灵敏度磁性液体倾角传感器的研究[J].仪器仪表学报,2022,43(02):10-16.
ZHAO Xinyu, YAO Jie, LIU Jiameng, et al. Research on a high-sensitivity magnetic liquid inclination sensor[J].Chinese Journal of Scientific Instrument,2022,43(02):10-16.)
[5] Gonella V C, Hanser F, Vorwerk J, et al. Influence of local particle concentration gradient forces on the flow-mediated mass transport in a numerical model of magnetic drug targeting[J]. Journal of Magnetism and Magnetic Materials, 2021, 525(2021) 167490.
[6] Missiles A. Feasibility study and model development for a ferrofluid viscous damper Final report[R]. Massachusetts: Space and Electronics Group, 1967: 1-84.
[7] Wei Y, Zhou H, Li D, et al. Numerical simulation and experimental study on the ferrofluid second-order buoyancy with a free surface[J]. Journal of Magnetism and Magnetic Materials, 2022, 553(2022) 169013.
[8] 杨文荣, 迟 超, 杨晓锐. 基于BP神经网络的多孔介质减振器隔振效果分析[J]. 工艺•技术•应用, 2015, 47(1):44-48.
YANG Wenrong, CHI Chao, YANG Xiaorui. Analysis of vibration isolation effect of porous medium shock absorber based on BP neural network[J]. Process,Technology and Application, 2015, 47(1):44-48.
[9] 杨文荣, 吴佳男, 杨晓锐, 等. 调谐式磁性液体减振器固有晃动频率分析与实验研究[J]. 实验技术与管理, 2019, 36(1):62-66.
YANG Wenrong, WU Jianan, YANG Xiaorui, et al. Analysis and experimental study on natural shaking frequency of tuned magnetic liquid shock absorber[J]. Journal of Experimental Technology and Management, 2019, 36(1):62-66.
[10] Sudo S, Nakagawa A. Vibration characteristics of the damper element composed of annular magnets and magnetic fluid[J]. International Journal of Modern Physics B, 2005, 19(07-09):1520-1526.
[11] Rosensweig RE. Fluidmagnetic buoyancy[J]. AIAA Journal 1966, 4(10):1751-1758.
[12] Rosensweig RE. Buoyancy and Stable Levitation of a Magnetic Body immersed in a Magnetizable Fluid[J]. Nature, 1966, 210:613-614.
[13] Yao J, Li D, Chen X, et al. Damping performance of a novel ferrofluid dynamic vibration absorber[J]. Journal of Fluids and Structures, 2019, 2019(90):190-204.
[14] Wang Z, Bossis G, Volkova O,et al. Active control of rod vibrations using magnetic fluids[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(2):93-97.
[15] Bashtovoi V, Kabachnikov D, Reks A, et al. Hydrodynamics and Energy Dissipation in a Low-Energy Magnetic Fluid Damper[J]. Magnetohydrodynamics, 2000, 36(3):190-196.
[16] Yang W, Li D, Feng Z. Hydrodynamics and energy dissipation in a ferrofluid damper[J]. Journal of Vibration and Control, 2013,19(2):183-190.
[17] Yao J, Chang J, Li D, et al. The dynamics analysis of a ferrofluid shock absorber[J]. Journal of Magnetism and Magnetic Materials, 2016, 402:28-33.
[18] 常建军, 姚杰, 李德才. 一种磁性液体阻尼减振器的试验研究[J]. 载人航天, 2017, 23(1):51-55.
CHANG Jianjun, YAO Jie, LI Decai. Experimental study on a magnetic liquid damping shock absorber[J]. Manned Spaceflight, 2017, 23(1):51-55.
[19] Li Y, Li D. The dynamics analysis of a magnetic fluid shock absorber with different inner surface materials[J]. Journal of Magnetism and Magnetic Materials, 2022, 2022(542) 168473.
[20] Bashtovoi VG, Kabachnikov DN, Kolobov AY, et al. Research of the dynamics of magnetic fluid dynamic absorber[J]. Journal of Magnetism and Magnetic Materials, 2002, 252(1-3):312–314.
[21] Bashtovoi VG, Motsar AA, Reks AG. Energy dissipation in a finite volume of magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 431:245-248.

PDF(2752 KB)

Accesses

Citation

Detail

段落导航
相关文章

/