基于VMD灰度图像编码和CNN的多传感融合轴承故障诊断

崔桂艳1,钟倩文1,郑树彬1,彭乐乐1,文静1,丁亚琦2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 316-326.

PDF(4887 KB)
PDF(4887 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 316-326.
论文

基于VMD灰度图像编码和CNN的多传感融合轴承故障诊断

  • 崔桂艳1,钟倩文1,郑树彬1,彭乐乐1,文静1,丁亚琦2
作者信息 +

Multi-sensor fusion bearing fault diagnosis based on VMD gray level image coding and CNN

  • CUI Guiyan1, ZHONG Qianwen1, ZHENG Shubin1, PENG Lele1, WEN Jing1, DING Yaqi2
Author information +
文章历史 +

摘要

针对滚动轴承振动信号非平稳、非线性且易受噪声干扰的特点,以及单一振动信号对某些轴承故障识别率偏低的问题,提出一种基于VMD灰度图像编码和CNN的多传感融合轴承故障诊断方法。首先,采用VMD对驱动端和风扇端振动信号分解,提取各阶本征模态分量与原始信号相关系数最大的分量;其次,将筛选出的IMF分量依次排列并转换成灰度图像;最后,设计CNN结构,将训练集输入网络进行训练,测试集验证网络的有效性,实现滚动轴承故障识别。CWRU数据集和XJTU-SY数据集测试准确率分别达到99.90%和100%,结果表明,该方法能够准确识别变工况下轴承故障类别及损伤程度;对原始信号加入高斯噪声后的测试准确率分别达到99.75%和99.90%,证明该方法具有良好的泛化能力和抗噪性能。

Abstract

Rolling bearing vibration signals have the characteristics of non-stationary, nonlinear, vulnerable to noise, and the low recognition rate of a single vibration signal to some bearing faults, a multi-sensor fusion bearing fault diagnosis method based on VMD gray image coding and CNN was proposed. Firstly, the vibration signals of the drive end and the fan end were decomposed by VMD to extract the intrinsic mode components with the largest correlation coefficient. Secondly, the selected IMF components were arranged in turn and converted into grayscale images. Finally, the CNN was trained by the training set, the effectiveness of the network was verified by the testing set to identify the fault types of bearings. The test accuracy of the CWRU data set and XJTU-SY data set is 99.90% and 100% respectively, the results show that this method can accurately identify bearing fault types and damage degree under variable working conditions. After adding Gaussian noise to the original signal, the test accuracy is 99.75% and 99.90% respectively, which proves that the method has good generalization ability and anti-noise performance.

关键词

故障诊断 / 信息融合 / 变分模态分解(VMD) / 卷积神经网络 / 灰度图像

Key words

fault diagnosis / information fusion / variational mode decomposition (VMD) / convolutional neural network / gray image

引用本文

导出引用
崔桂艳1,钟倩文1,郑树彬1,彭乐乐1,文静1,丁亚琦2. 基于VMD灰度图像编码和CNN的多传感融合轴承故障诊断[J]. 振动与冲击, 2023, 42(21): 316-326
CUI Guiyan1, ZHONG Qianwen1, ZHENG Shubin1, PENG Lele1, WEN Jing1, DING Yaqi2. Multi-sensor fusion bearing fault diagnosis based on VMD gray level image coding and CNN[J]. Journal of Vibration and Shock, 2023, 42(21): 316-326

参考文献

[1]  丁承君,冯玉伯,王曼娜. 基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击,2021, 40(02): 287-296.
DING Chengjun, FENG Yubo, WANG Manna. Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(02): 287-296.
[2]  朱丹宸,张永祥,潘洋洋,等. 基于多传感器信号和卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击,2020, 39(04): 172-178.
ZHU Danchen,ZHANG Yongxiang,PAN Yangyang, et al. Fault diagnosis for rolling element bearings based on multi-sensor signals and CNN[J]. Journal of Vibration and Shock, 2020, 39(04): 172-178.
[3]  谷玉海,朱腾腾,饶文军,等. 基于EMD二值化图像和CNN的滚动轴承故障诊断[J]. 振动.测试与诊断,2021, 41(01): 105-113+203.
GU Yuhai, ZHU Tengteng, RAO Wenjun, et al. Fault diagnosis for rolling bearing based on EMD binarization image and CNN [J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(01): 105-113+203.
[4]  Li J, Yao X, Wang X, et al. Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J]. Measurement, 2020, 153: 107419.
[5]  Ding J, Xiao D, Li X. Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm[J]. IEEE Access, 2020, 8: 18456-18474.
[6]  鄢仁武,林穿,高硕勋,等. 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击,2020, 39(10): 198-205.
YAN Renwu, LIN Chuan, GAO Shuoxun, et al. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39(10): 198-205.
[7]  蒋佳炜,胡以怀,柯赟,等. 基于小波包特征提取和模糊熵特征选择的柴油机故障分析[J]. 振动与冲击,2020, 39(04): 273-277+298.
JIANG Jiawei, HU Yihuai, KE Yun, et al. Fault diagnosis of diesel engines based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection[J]. Journal of Vibration and Shock, 2020, 39(04): 273-277+298.
[8]  张立智,徐卫晓,井陆阳,等. 基于EMD-SVD和CNN的旋转机械故障诊断[J]. 振动.测试与诊断,2020, 40(06): 1063-1070+1228.
ZHANG Lizhi, XU Weixiao, JIN Luyang, et al. Fault diagnosis of rotating machinery based on EMD-SVD and CNN[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(06): 1063-1070+1228.
[9]  Li M, Sun Z H, He W, et al. Rolling bearing fault diagnosis under variable working conditions based on joint distribution adaptation and SVM[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8.
[10] Zhao B, Zhang X, Li H, et al. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions[J]. Knowledge-Based Systems, 2020, 199: 105971.
[11] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
[12] Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[13] 何勇,王红,谷穗. 一种基于遗传算法的VMD参数优化轴承故障诊断新方法[J]. 振动与冲击,2021, 40(06): 184-189.
HE Yong, WANG Hong, GU Sui. New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm[J]. Journal of Vibration and Shock, 2021, 40(06): 184-189.
[14] Li H, Liu T, Wu X, et al. An optimized VMD method and its applications in bearing fault diagnosis[J]. Measurement, 2020, 166: 108185.
[15] 王新,闫文源. 基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击,2017, 36(18): 252-256.
WANG Xin, YAN Wenyuan. Fault diagnosis of roller bearings based on the variational mode decomposition and SVM[J]. Journal of Vibration and Shock, 2017, 36(18): 252-256.
[16] 任浩,屈剑锋,柴毅,等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策,2017, 32(08): 1345-1358.
REN Hao, QU Jianfeng, CHAI Yi, et al. Deep learning for fault diagnosis: The state of the art and challenge[J]. Control and Decision, 2017, 32(08): 1345-1358.
[17] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017, 40(06): 1229-1251.
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(06): 1229-1251.
[18] 马永杰,程时升,马芸婷,等. 卷积神经网络及其在智能交通系统中的应用[J/OL]. 交通运输工程学报: 1-24 [2021-09-
07].
MA YongJie, CHENG ShiSheng, MA YunTing, et al. Convolutional neural network and its application in intelligent transportation system[J/OL]. Journal of Traffic and Transportation Engineering: 1-24 [2021-09-07].
[19] 许子非,金江涛,李春. 基于多尺度卷积神经网络的滚动轴承故障诊断方法[J]. 振动与冲击,2021, 40(18): 212-220.
XU Zifei, JIN Jiangtao, LI Chun. New method for the fault diagnosis of rolling bearings based on a multiscale convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(18): 212-220.
[20] 张成军,阴妍,鲍久圣,等. 多源信息融合故障诊断方法研究进展[J]. 河北科技大学学报,2014, 35(03): 213-221.
ZHANG Chengjun, YIN Yan, BAO Jiusheng, et al. Research progress in fault diagnosis methods based on multi-source information fusion[J]. Journal of Hebei University of Science and Technology, 2014, 35(03): 213-221.
[21] 李益兵,黄定洪,马建波,等. 基于深度置信网络与信息融合的齿轮故障诊断方法[J]. 振动与冲击,2021, 40(08): 62-69.
LI Yibing, HUANG Dinghong, MA Jianbo, et al. A gear fault diagnosis method based on deep belief network and information fusion[J]. Journal of Vibration and Shock, 2021, 40(08): 62-69.
[22] 徐彦伟,刘明明,刘洋,等. 基于信息融合的机器人薄壁轴承故障智能诊断[J]. 光学精密工程,2019, 27(07): 1577-1592.
Xu Yanwei, LIU Mingming, LIU Yang, et al. Intelligent fault
diagnosis of thin wall bearing based on information fusion[J]. Optics and Precision Engineering, 2019, 27(07): 1577-1592.
[23] 唐贵基,王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报,2016, 29(04): 638-648.
Tang Guiji, Wang Xiaolong. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2016, 29(4): 638-648.
[24] 刘东瀛,邓艾东,刘振元,等. 基于EMD与相关系数原理的故障声发射信号降噪研究[J]. 振动与冲击,2017, 36(19):
71-77
LIU Dongying, DENG Aidong, LIU Zhenyuan, et al. De-noising method for fault acoustic emission signals based on the EMD and correlation coefficient[J]. Journal of Vibration and Shock, 2017, 36(19): 71-77
[25] The Case Western Reserve University Bearing Data Center Bearing data center seeded fault test data[EB/OL].[2016-06-10].http: ∥csegroups.case.edu /bearing data center/pages/ download-data-file.
[26] 郑小霞,周国旺,任浩翰,等. 基于变分模态分解和排列熵的滚动轴承故障诊断[J]. 振动与冲击,2017, 36(22): 22-28.
ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of Vibration and Shock, 2017, 36(22): 22-28.
[27] Wang B, Lei Y G, Li N P. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018, 69(1): 401-412.
 

PDF(4887 KB)

461

Accesses

0

Citation

Detail

段落导航
相关文章

/