[1] 丁承君,冯玉伯,王曼娜. 基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击,2021, 40(02): 287-296.
DING Chengjun, FENG Yubo, WANG Manna. Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(02): 287-296.
[2] 朱丹宸,张永祥,潘洋洋,等. 基于多传感器信号和卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击,2020, 39(04): 172-178.
ZHU Danchen,ZHANG Yongxiang,PAN Yangyang, et al. Fault diagnosis for rolling element bearings based on multi-sensor signals and CNN[J]. Journal of Vibration and Shock, 2020, 39(04): 172-178.
[3] 谷玉海,朱腾腾,饶文军,等. 基于EMD二值化图像和CNN的滚动轴承故障诊断[J]. 振动.测试与诊断,2021, 41(01): 105-113+203.
GU Yuhai, ZHU Tengteng, RAO Wenjun, et al. Fault diagnosis for rolling bearing based on EMD binarization image and CNN [J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(01): 105-113+203.
[4] Li J, Yao X, Wang X, et al. Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J]. Measurement, 2020, 153: 107419.
[5] Ding J, Xiao D, Li X. Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm[J]. IEEE Access, 2020, 8: 18456-18474.
[6] 鄢仁武,林穿,高硕勋,等. 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击,2020, 39(10): 198-205.
YAN Renwu, LIN Chuan, GAO Shuoxun, et al. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39(10): 198-205.
[7] 蒋佳炜,胡以怀,柯赟,等. 基于小波包特征提取和模糊熵特征选择的柴油机故障分析[J]. 振动与冲击,2020, 39(04): 273-277+298.
JIANG Jiawei, HU Yihuai, KE Yun, et al. Fault diagnosis of diesel engines based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection[J]. Journal of Vibration and Shock, 2020, 39(04): 273-277+298.
[8] 张立智,徐卫晓,井陆阳,等. 基于EMD-SVD和CNN的旋转机械故障诊断[J]. 振动.测试与诊断,2020, 40(06): 1063-1070+1228.
ZHANG Lizhi, XU Weixiao, JIN Luyang, et al. Fault diagnosis of rotating machinery based on EMD-SVD and CNN[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(06): 1063-1070+1228.
[9] Li M, Sun Z H, He W, et al. Rolling bearing fault diagnosis under variable working conditions based on joint distribution adaptation and SVM[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8.
[10] Zhao B, Zhang X, Li H, et al. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions[J]. Knowledge-Based Systems, 2020, 199: 105971.
[11] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
[12] Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[13] 何勇,王红,谷穗. 一种基于遗传算法的VMD参数优化轴承故障诊断新方法[J]. 振动与冲击,2021, 40(06): 184-189.
HE Yong, WANG Hong, GU Sui. New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm[J]. Journal of Vibration and Shock, 2021, 40(06): 184-189.
[14] Li H, Liu T, Wu X, et al. An optimized VMD method and its applications in bearing fault diagnosis[J]. Measurement, 2020, 166: 108185.
[15] 王新,闫文源. 基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击,2017, 36(18): 252-256.
WANG Xin, YAN Wenyuan. Fault diagnosis of roller bearings based on the variational mode decomposition and SVM[J]. Journal of Vibration and Shock, 2017, 36(18): 252-256.
[16] 任浩,屈剑锋,柴毅,等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策,2017, 32(08): 1345-1358.
REN Hao, QU Jianfeng, CHAI Yi, et al. Deep learning for fault diagnosis: The state of the art and challenge[J]. Control and Decision, 2017, 32(08): 1345-1358.
[17] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017, 40(06): 1229-1251.
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(06): 1229-1251.
[18] 马永杰,程时升,马芸婷,等. 卷积神经网络及其在智能交通系统中的应用[J/OL]. 交通运输工程学报: 1-24 [2021-09-
07].
MA YongJie, CHENG ShiSheng, MA YunTing, et al. Convolutional neural network and its application in intelligent transportation system[J/OL]. Journal of Traffic and Transportation Engineering: 1-24 [2021-09-07].
[19] 许子非,金江涛,李春. 基于多尺度卷积神经网络的滚动轴承故障诊断方法[J]. 振动与冲击,2021, 40(18): 212-220.
XU Zifei, JIN Jiangtao, LI Chun. New method for the fault diagnosis of rolling bearings based on a multiscale convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(18): 212-220.
[20] 张成军,阴妍,鲍久圣,等. 多源信息融合故障诊断方法研究进展[J]. 河北科技大学学报,2014, 35(03): 213-221.
ZHANG Chengjun, YIN Yan, BAO Jiusheng, et al. Research progress in fault diagnosis methods based on multi-source information fusion[J]. Journal of Hebei University of Science and Technology, 2014, 35(03): 213-221.
[21] 李益兵,黄定洪,马建波,等. 基于深度置信网络与信息融合的齿轮故障诊断方法[J]. 振动与冲击,2021, 40(08): 62-69.
LI Yibing, HUANG Dinghong, MA Jianbo, et al. A gear fault diagnosis method based on deep belief network and information fusion[J]. Journal of Vibration and Shock, 2021, 40(08): 62-69.
[22] 徐彦伟,刘明明,刘洋,等. 基于信息融合的机器人薄壁轴承故障智能诊断[J]. 光学精密工程,2019, 27(07): 1577-1592.
Xu Yanwei, LIU Mingming, LIU Yang, et al. Intelligent fault
diagnosis of thin wall bearing based on information fusion[J]. Optics and Precision Engineering, 2019, 27(07): 1577-1592.
[23] 唐贵基,王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报,2016, 29(04): 638-648.
Tang Guiji, Wang Xiaolong. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2016, 29(4): 638-648.
[24] 刘东瀛,邓艾东,刘振元,等. 基于EMD与相关系数原理的故障声发射信号降噪研究[J]. 振动与冲击,2017, 36(19):
71-77
LIU Dongying, DENG Aidong, LIU Zhenyuan, et al. De-noising method for fault acoustic emission signals based on the EMD and correlation coefficient[J]. Journal of Vibration and Shock, 2017, 36(19): 71-77
[25] The Case Western Reserve University Bearing Data Center Bearing data center seeded fault test data[EB/OL].[2016-06-10].http: ∥csegroups.case.edu /bearing data center/pages/ download-data-file.
[26] 郑小霞,周国旺,任浩翰,等. 基于变分模态分解和排列熵的滚动轴承故障诊断[J]. 振动与冲击,2017, 36(22): 22-28.
ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of Vibration and Shock, 2017, 36(22): 22-28.
[27] Wang B, Lei Y G, Li N P. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018, 69(1): 401-412.