双摆桥式起重机抗扰防摆跟踪控制

吴易鸣1,孙宁2,3,杨钦朝1,尹健宇1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 36-42.

PDF(1458 KB)
PDF(1458 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 36-42.
论文

双摆桥式起重机抗扰防摆跟踪控制

  • 吴易鸣1,孙宁2,3,杨钦朝1,尹健宇1
作者信息 +

Anti-disturbance and anti-swing tracking control of double-pendulum overhead crane

  • WU Yiming1, SUN Ning2,3, YANG Qinzhao1, YIN Jianyu1
Author information +
文章历史 +

摘要

针对双摆桥式起重机系统的控制问题提出了一种自适应鲁棒防摆跟踪控制方法。在起重机本身存在着参数不确定性以及复杂的难建模动态的情况下,该方法可对这些未知的干扰因素进行在线估计,并实现有效的防摆与良好的轨迹跟踪。所提方法在L_1自适应控制框架下对具有欠驱动特性的双摆桥式起重机系统展开分析,构造了辅助变量将系统模型进行等效变换,并在该模型中引入集总干扰项以处理未建模动态(模型误差)的影响。结合观测器、滤波器、与更新律的设计,所提方法能够在理论上保证跟踪误差有界可调节,即可通过增大调节因子减小跟踪误差。一系列仿真与硬件实验结果验证了所提方法的有效性。

Abstract

An adaptive robust anti-swing tracking control method for underactuated double-pendulum overhead crane systems was proposed. In the presence of parametric uncertainties and complicated difficult-to-model dynamics, the proposed control method can estimate these unknown disturbances online, and achieve effective anti-swing and trajectory tracking performance. The proposed method was designed under the framework of L_1 adaptive control, and the underactuated characteristics of the double-pendulum overhead crane systems were analyzed. The dynamic equations were equivalently transformed by constructing an auxiliary variable. Based on the transformed model, the unmodeled dynamics (modeling errors) was addressed by introducing a lumped disturbance term. Together with the designed observer, filter, and updating law, the tracking error was proven to be bounded and adjustable. Specifically, the tracking error can be reduced by increasing the updating factor. A series of simulation and experimental results validated the effectiveness of the proposed method. 

关键词

欠驱动系统 / 桥式起重机 / 运动控制 / 轨迹跟踪

Key words

underactuated systems / overhead crane / motion control / trajectory tracking

引用本文

导出引用
吴易鸣1,孙宁2,3,杨钦朝1,尹健宇1. 双摆桥式起重机抗扰防摆跟踪控制[J]. 振动与冲击, 2023, 42(21): 36-42
WU Yiming1, SUN Ning2,3, YANG Qinzhao1, YIN Jianyu1. Anti-disturbance and anti-swing tracking control of double-pendulum overhead crane[J]. Journal of Vibration and Shock, 2023, 42(21): 36-42

参考文献

【1】欧阳慧珉, 佐野滋则, 内山直树, 等. 基于LMI的旋转起重机鲁棒控制器设计[J]. 振动与冲击, 2014, 33(1): 106-112.
OUYANG Hui-min, SANO Shigenori, UCHIYAMA Naoki, et al. Robust controller design for rotary cranes based on LMI [J]. Journal of Vibration and Shock, 2014, 33(1): 106-112.
【2】欧阳慧珉, 张广明, 王德明, 等. 基于S型曲线轨道的桥式起重机最优控制[J]. 振动与冲击, 2014, 33(23): 140-144.
OUYANG Hui-min, ZHANG Guang-ming, WANG De-ming, et al. Optimal control for overhead cranes based on S-shaped curve trajectory[J]. Journal of Vibration and Shock, 2014, 33(23): 140-144.
【3】陈鹤, 吴庆祥, 孙宁, 杨桐, 方勇纯. 面向大尺寸货物运送的吊车控制方法综述[J]. 智能系统学报, 2022, 17(4): 824-838.
CHEN He, WU Qing-xiang, SUN Ning, et al. Overview of crane control methods for large-size cargo transportation, CAAI Transactions on Intelligent Systems, 2022, 17(4): 824-838.
【4】黄自鑫, 赖旭芝, 王亚午, 等. 基于轨迹规划的平面三连杆欠驱动机械臂位置控制[J]. 控制与决策, 2020, 35(2): 382-388.
HUANG Zi-xin, LAI Xu-zhi, WANG Ya-wu, et al. Position control of planar three-link underactuated manipulator based on trajectory planning[J]. Control and Decision, 2020, 35(2): 382-388.
【5】Yang S, Xian B. Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload[J], IEEE Transactions on Industrial Electronics, 2020, 67(3),  2054-2064.
【6】Zhang Z, Dong J. Fault-tolerant containment control for IT2 fuzzy networked multiagent systems against denial-of-service attacks and actuator faults[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2213-2224.
【7】夏国清, 杨莹, 赵为光. 欠驱动AUV模糊神经网络L_2增益鲁棒跟踪控制[J]. 控制与决策, 2013, 28(3): 351-356.
XIA Guo-qing, YANG Ying, ZHAO Wei-guang. FNN-based L_2 following control of underactuated underwater vehicles[J]. Control and Decision, 2013, 28(3): 351-356.
【8】Qiu J, Ma M, Wang T, Gao H. Gradient descent-based adaptive learning control for autonomous underwater vehicles with unknown uncertainties[J], IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5266-5273.
【9】常晓恒. 具有D稳定性约束的T-S模糊系统H_∞滤波器设计[J]. 控制与决策, 2011, 26(7): 1051-2055.
CHANG Xiao-heng, H_∞ filter design for T-S fuzzy systems with D stability constraints[J], Control and Decision, 2011, 26(7): 1051-1055.
【10】Uchiyama N, Ouyang H, Sano S. Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion[J], Mechatronics, 2013, 23: 1223-1236.
【11】Hilhorst G, Pipeleers G, Michiels W, et al. Fixed-order linear parameter-varying feedback control of a lab-scale overhead crane[J], IEEE Transactions on Control Systems Technology, 2016, 24(5): 1899-1907.
【12】石怀涛, 姚福星, 白晓天, 等. 基于能量分析的桥式起重机防摆控制方法[J]. 控制与决策, 2021, 36(12): 3091-3096.
SHI Huai-tao, YAO Fu-xing, BAI Xiao-tian, et al. Anti-swing control method of bridge crane based on energy analysis[J]. Control and Decision, 2021, 36(12): 3091-3096.
【13】Zhang M, Jing X. Model-free saturated PD-SMC method for 4-DOF tower crane systems[J], IEEE Transactions on Industrial Electronics, 2022, 69(10): 10270-10280.
【14】Kim G H, Hong K S. Adaptive sliding-mode control of an offshore container crane with unknown disturbances[J], IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2850-2861.
【15】Ovalle L, Rios H, Llama M, et al. Continuous sliding-mode output-feedback control for stabilization of a class of underactuated systems[J], IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2021.3075179.
【16】吴庆祥, 汪小凯, 王孝文, 等. 起重机前馈防摇控制算法仿真及实验研究[J]. 武汉理工大学学报, 2016, 38(6): 109-116.
WU Qing-xiang, WANG Xia-kai, WANG Xxiao-wen, et al. Simulation and Experimental Research of the feedforward anti-sway control algorithm for overhead cranes[J], Journal of Wuhan University of Technology, 2016, 38(6): 109-116.
【17】Wu X, Xu K, He X. Disturbance-observer-based nonlinear control for overhead cranes subject to uncertain disturbances[J], Mechanical Systems and Signal Processing, 2020, 139: 106631.
【18】Yu W, Li X, Panuncio F. Stable neural PID anti-swing control for an overhead crane[J], Intelligent Automation \& Soft Computing, 2014, 20(2): 145-158.
【19】Tuan L A. Neural Observer and adaptive fractional-order backstepping fast-terminal sliding-mode control of RTG cranes[J], IEEE Transactions on Industrial Electronics, 2021, 68(1): 434-442.
【20】Solihin M I, Akmeliawati R, Legowo A. Robust feedback control design using PSO-based optimisation: a case study in gantry crane control[J], International Journal of Mechatronics and Automation, 2011, 1(2): 121-131.
【21】Peng J, Huang J, Singhose W. Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions[J], Nonlinear Dynamics, 2019, 98: 1041-1048.
【22】Huang J, Ye J. Analytical analysis and oscillation control of payload twisting dynamics in a tower crane carrying a slender payload[J], Mechanical Systems and Signal Processing, 2021, 158: 107763.
【23】He W, Ge S S. Vibration control of a flexible beam with output constraint[J], IEEE Transactions on Industrial Electronics, 2015, 62(8): 5023-5030.
【24】Masound Z N, Alhazza K A. A smooth multimode waveform command shaping control with selectable command length[J], Journal of Sound and Vibration, 2017, 397: 1-16.
【25】Jaafar H I, Mohamed Z, Ahmad M A, et al. Control of an underactuated double-pendulum overhead crane using improved model reference command shaping: Design, simulation and experiment[J], Mechanical Systems and Signal Processing, 2021, 151: 107358.
【26】欧阳慧珉, 王健, 张广明, 等. 双摆旋转起重机轨迹生成[J]. 控制理论与应用, 2019, 36(8): 1265-1274.
OUYANG Hui-min, WANG Jian, ZHANG Guang-ming, et al. Trajectory generation for double-pendulum rotary crane[J], Control Theory & Applications, 2019, 36(8): 1265-1274.
【27】陈鹤, 方勇纯, 孙宁, 等. 基于伪谱法的双摆吊车时间最优消摆轨迹规划策略[J]. 自动化学报, 2016, 42(1): 153-160.
CHEN He, FANG Yong-chun, SUN Ning, et al. Pseudospectral method based time optimal anti-swing trajectory planning for double pendulum crane systems[J], Acta Automatica Sinica, 2016, 42(1): 153-160.
【28】Wu Q, Wang X, Hua L, et al. Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances[J], Mechanical Systems and Signal Processing, 2021, 158: 107756.
【29】石怀涛, 黄建起, 王延臣. 基于能量强耦合的双摆型塔机消摆控制[J]. 控制工程, 2022, 29(8): 1395-1403.
SHI Huai-tao, HUANG Jian-qi, WANG Yan-chen. Anti-swing control of double pendulum tower crane based on strong energy coupling[J], Control Engineering of China, 2022, 29(8): 1395-1403.
【30】Qian D, Tong S, Lee S. Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes[J], Automation in Construction, 2016, 65: 133-143.
【31】Zuo Z, Ru P. Augmented L_1 adaptive tracking control of quad-rotor unmanned aircrafts[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3090-3101.
【32】Cao C, Hovakimyan N. Guaranteed transient performance with L_1 adaptive controller for systems with unknown time-varying parameters and bounded disturbances: Part I[C]. Proc of the American Control Conference. New York: IEEE, 2007: 3925-3930.
【33】Cao C, Hovakimyan N. L_1  adaptive controller for multi-input multi-output systems in the presence of unmatched disturbances[C]. Proc of the American Control Conference. Seattle: IEEE, 2008: 4105-4110.
【34】Khalil H K, Grizzle J W. Nonlinear systems[M]. New Jersey: Prentice Hall, 2002.
【35】Sun N, Yang T, Fang Y, et al. Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: Design and experiments. IEEE Transactions on System, Man, and Cybernetics: Systems[J], 2019, 49(7): 1408-1418.
【36】Sun N, Fang Y, Zhang Y, et al A novel kinematic coupling-based trajectory planning method for overhead cranes[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 166-173. 

PDF(1458 KB)

815

Accesses

0

Citation

Detail

段落导航
相关文章

/