改进型免疫克隆布谷鸟算法求解软后坐火炮多参数辨识

赵伟1,侯保林2,鲍丹1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 43-51.

PDF(2161 KB)
PDF(2161 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 43-51.
论文

改进型免疫克隆布谷鸟算法求解软后坐火炮多参数辨识

  • 赵伟1,侯保林2,鲍丹1
作者信息 +

Multi-parameter identification of soft recoil artillery launch process using IICCA

  • ZHAO Wei1, HOU Baolin2, BAO Dan1
Author information +
文章历史 +

摘要

软后坐火炮利用前冲动能抵消部分后坐能量,从而减小火炮发射过程中的冲击与振动。为进一步研究软后坐火炮发射过程中的动力学特性以及解决软后坐火炮发射过程动力学模型多参数辨识困难的问题,首先依据伯努利方程建立软后坐火炮发射过程的动力学模型,其次提出了一种改进型免疫克隆布谷鸟算法(improved immune clone cuckoo algorithm,IICCA)。该算法在更新过程中引入随机交叉与高频变异提高了算法的局部搜索能力,引入自适应算子来克服算法不易取得最佳概率值的问题,引入精英抗体提取算子来提高算法的计算效率。为进一步提高算法的收敛速度,引入动态疫苗接种策略,对疫苗接种后的抗体种群采用莱维飞行和巢寄生行为进行二次搜索。通过5个多峰测试函数对改进算法进行验证,计算结果表明该改进算法相比免疫克隆选择算法、免疫遗传算法、自适应粒子群算法和改进型布谷鸟算法均具有更高的计算精度和更快的收敛速度。最终,辨识结果与实验结果的曲线相似度高达97.02%,表明IICCA在解决软后坐火炮发射过程多参数辨识问题上的有效性和准确性。

Abstract

The soft recoil gun uses the forward rushing energy to offset part of the recoil energy so as to reduce the shock and vibration during the firing process. In order to further research the dynamic characteristic of soft recoil gun and solve the problem of multi-parameter identification of the dynamic model of the soft recoil gun during the firing process, a dynamic model of soft recoil gun is established based on the Bernoulli equation and an improved immune clone cuckoo algorithm (IICCA) is proposed. In the updating process, the algorithm introduces random crossover and high-frequency mutation to improve the local search ability of the algorithm, introduces adaptive operator to overcome the problem that the algorithm is not easy to obtain the best probability value, and introduces elite antibody extraction operator to improve the computational efficiency of the algorithm. Dynamic vaccination strategy is introduced and the antibody after vaccination is carried out according to the Lévy flight update strategy and nest parasitic behavior to further improve the algorithm convergence speed. The improved algorithm is tested by 5 multi-peak test functions. The results show that the improved algorithm has higher computational accuracy and faster convergence speed than immune clonal selection algorithm, immune genetic algorithm, adaptive particle swarm optimization and improved cuckoo search algorithm. Finally, the curve similarity between the identified results and the experimental results is as high as 97.02%, which shows that IICCA is effective and accurate in solving the multi-parameter identification problem of the soft recoil gun firing process.

关键词

软后坐技术 / 伯努利方程 / 多参数辨识 / 免疫克隆选择 / 高频变异 / 疫苗接种 / 莱维飞行 / 巢寄生行为

Key words

soft recoil technology / Bernoulli equation / multi-parameter identification / immune clone selection / high frequency variation / vaccination / Lévy-flight / nest parasitism behavior

引用本文

导出引用
赵伟1,侯保林2,鲍丹1. 改进型免疫克隆布谷鸟算法求解软后坐火炮多参数辨识[J]. 振动与冲击, 2023, 42(21): 43-51
ZHAO Wei1, HOU Baolin2, BAO Dan1. Multi-parameter identification of soft recoil artillery launch process using IICCA[J]. Journal of Vibration and Shock, 2023, 42(21): 43-51

参考文献

[1] KANG Kukjeong, GIMM Hakinin. Numerical and experimental studies on the dynamic behaviors of a gun that uses the soft recoil system[J]. Journal of Mechanical Science and Technology, 2012, 26(7):2167-2170.
[2] 卫晓娟, 丁旺才, 李宁洲, 周学舟. 基于改进粒子群算法的Volterra模型参数辨识[J]. 振动与冲击, 2015,34(21): 105 -112
WEI Xiaojuan, DING Wangcai, LI Ningzhou, et al. Parametric identification od nonlinear volterra model based on improved PSO algorithm[J]. Journal of Vibration and Shock, 2015,34(21): 105-112.
[3] 管军, 周家胜, 易文俊, 等. 基于自适应混沌变异粒子群优化算法的旋转弹丸气动参数辨识[J].兵工学报, 2017, 38(1):73-80.
GUAN Jun, ZHOU Jiasheng, YI Wenjun, et al. Identification of spinning projectile aerodynamic parameters using adaptive chaotic mutation particle swarm optimization[J]. Acta Armamentarii, 2017, 38(1):73-80.
[4] JING Yun, ZHANG Zhenhua. A study on car flow organization in the loading end of heavy haul railway based on immune clonal selection algorithm[J]. Neural Computing and Applications, 2018, 31:1455-1465.
[5] 赵学武, 冀俊忠, 姚垚. 基于免疫克隆选择算法搜索GMM的脑岛功能划分[J]. 浙江大学学报(工学版), 2017, 51(12):2320-2331.
ZHAO Xuewu, JI Junzhong, YAO Yao. Insula functional parcellation by searching gaussian mixture model (GMM) using immune clonal selection (ICS) algorithm [J]. Journal of Zhejiang University (Engineering Science), 2017, 51(12):2320-2331.
[6] 王守鹏, 赵冬梅. 基于免疫克隆约束多目标优化方法的电网故障诊断[J]. 电网技术, 2017, 41(12): 4061 -4068.
WANG Shoupeng, ZHAO Dongmei. Power grid fault diagnosis based on immune clonal constrained multi- objective optimization method [J]. Power System Technology, 2017, 41(12):4061-4068.
[7] 刘朝华, 章兢, 李小花, 等. 免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法[J].自动化学报,2012,38(10):1698-1708.
LIU Zhaohua, ZHANG Jing, LI Xiaohua, et al. Immune co-evolution particle swarm optimization for permanent magnet synchronous motor parameter identification[J]. Acta Automatica Sinica, 2012, 38(10):1698-1708.
[8] 禹文科. 改进免疫克隆选择算法的多目标轨迹优化[D].湖南大学,2016.
YU Wenke. Application of improved immune clonal selection algorithm in robot trajectory planning and multi-objective optimization[M]. Hunan University, 2016.
[9] 张玲,白中英,谢康.动态疫苗接种的入侵检测方法[J].北京邮电大学学报,2014,37(S1):77-82.
ZHANG Ling, BAI Zhongying, XIE Kang. Dynamic introduction detection with vaccination[J]. Journal of Beijing University of Posts and Telecommunication, 2014, 37(S1):77-82.
[10] YANG Xinshe, DEB Suash. Cuckoo search: state-of-the-art and opportunities[C]// 2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI). IEEE, 2018:55-59.
[11] YANG Xinshe, DEB Suash. Cuckoo search via Lévy flights[C] //2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, 2009: 210-214.
[12] RICARDO Martinezgarcia, JUSTIN Mcalabrese, CRISTOBAL Lopez. Optimal search in interacting populations: Gaussian jumps vs Levy flights[J]. Physical Review E, 2014, 89(3):032718.
[13] JIAO Licheng, WANG Lei. A novel genetic algorithm based on immunity[J]. IEEE Transactions on Systems Man and Cybernetics-Part A Systems and Humans, 2000, 30(5):552-561.
[14] 周怡, 王俊雄. 自适应粒子群算法在AUV水动力参数辨识中的应用[J]. 舰船科学技术, 2021, 43(11):90-95.
ZHOU Yi, WANG Jun-xiong. Application of adaptive particle swarm optimization algorithm in AUV hydrodynamic parameter identification[J]. Ship Science and Technology, 2021, 43(11): 90-95.
[15] ZHANG Dong, ZHOU Lijun, HUANG Lin, et al. Study on improved cuckoo search algorithm applied in parameters estimation of multi-layer soil: 1-D and 3-D[J]. IET Science, Measurement and Technology, 2020, 14(7).:844-852.
[16] 杨玉良, 秦俊奇, 狄长春, 邓辉咏, 张小嘎. 火炮动力后坐试验台建模及射击模拟准确度评估[J]. 振动与冲击,  2014, 33(10): 127-130.
YANG Yuliang, QIN Junqi, DI Changchun, et al. Modeling and firing simulation accuracy assessment of a gun-power -recoil test table[J]. Journal of Vibration and Shock, 2014, 33(10): 127-130.
[17] LI Lingjie, LIN Qiuzhen, LIU Songbai, et al. A novel multi-objective immune algorithm with a decomposition based clonal selection[J]. Applied Soft Computing, 2019, 81:105490.

PDF(2161 KB)

347

Accesses

0

Citation

Detail

段落导航
相关文章

/