行星传动系统啮入冲击提取技术及验证

胡升阳1,方宗德2,刘超3,侯祥颖4,杜进辅3,沈刚1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 63-70.

PDF(2668 KB)
PDF(2668 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 63-70.
论文

行星传动系统啮入冲击提取技术及验证

  • 胡升阳1,方宗德2,刘超3,侯祥颖4,杜进辅3,沈刚1
作者信息 +

Extraction technology and verification of meshing impact in planetary transmission system

  • HU Shengyang1, FANG Zongde2, LIU Chao3, HOU Xiangying4, DU Jinfu3, SHEN Gang1
Author information +
文章历史 +

摘要

针对行星传动系统受误差随机性及复杂耦合关系影响难以准确构建系统啮入冲击解析模型的局限,提出结合希尔伯特黄变换、小波降噪及瞬时频率理论,由试验应变信号提取系统啮入冲击的方法。通过设计测量方法并搭建试验平台,获取应变信号频率瞬时变化点,判定提前啮入发生位置,从而获取系统啮入冲击,并创建内啮合副啮入冲击解析模型和有限元分析模型对所提方法予以验证。结果表明,试验结果因受外界因素影响大于理论结果和有限元结果,但三者在趋势及规律性上完全一致。本文试验提取方案避免了复杂数学解析模型的构建,且不受系统复杂性及多样性影响,具备广泛、准确、方便等优点,可为实时修形设计以及复杂传动系统的动态性能评测提供依据。

Abstract

Aiming at the limitation that the transmission system is affected by the randomness of the error and the complex coupling relation, it is difficult to construct the analytical model of the system's meshing impact. In this paper, a new method is proposed, which combines Hilbert-Huang transform, wavelet denoising and instantaneous frequency theory. By designing the measurement method and setting up the test platform, the instantaneous change point of strain signal frequency was obtained, and the position of advance meshing was determined, so as to obtain the system's meshing impact. Analytical model of internal meshing pair's meshing impact and a finite element analysis model were created to verify the proposed method. The results show that the experimental results are more influenced by external factors than the theoretical results and finite element results, but the trend and regularity of the three are completely consistent. The experimental extraction scheme in this paper avoids the construction of complex mathematical analytical model, is not affected by the complexity and diversity of the system, and has the advantages of wide, accurate and convenient, which can provide a basis for real-time shape modification design and dynamic performance evaluation of complex transmission system.

关键词

行星传动系统 / 试验提取 / 啮入冲击 / 希尔伯特黄变换 / 瞬时频率

Key words

planetary transmission system / experimental extraction / meshing impact / hilbert-huang transform / instantaneous frequency

引用本文

导出引用
胡升阳1,方宗德2,刘超3,侯祥颖4,杜进辅3,沈刚1. 行星传动系统啮入冲击提取技术及验证[J]. 振动与冲击, 2023, 42(21): 63-70
HU Shengyang1, FANG Zongde2, LIU Chao3, HOU Xiangying4, DU Jinfu3, SHEN Gang1. Extraction technology and verification of meshing impact in planetary transmission system[J]. Journal of Vibration and Shock, 2023, 42(21): 63-70

参考文献

[1] LIN T, OU H, LI R. A finite element method for 3D static and dynamic contact impact analysis of gear drives[J]. Computer Methods in Applied Mechanics and Engineering. 2007, 196(9): 1716-1728.
[2] YU W, MECHEFSKE C K. Analytical modeling of spur gear corner contact effects[J]. Mechanism and Machine Theory, 2016, 96(1): 146-164.
[3] 周长江, 唐进元, 钟志华. 齿轮传动的线外啮合与冲击摩擦[J]. 机械工程学报, 2008, 44(3): 75-81.
ZHOU Changjiang, TANG Jingyuan, ZHONG Zhihua. External line meshing impact and friction of gear transmission[J]. Journal of Mechanical Engineering, 2008, 44(3): 75-81.
[4] 王峰, 方宗德, 李声晋. 重合度对人字齿轮非线性系统振动特性的影响分析[J]. 振动与冲击, 2014, 33(3): 18-22.
WANG Feng, FANG Zongde, LI Shengjin. Analysis of influence of contact degree on vibration characteristics of nonlinear system of Herringbone gear[J]. Journal of Vibration and Shock, 2014, 33(3): 18-22.
[5] 郭芳, 方宗德, 张西金. 考虑实测基节误差的修形齿轮啮入冲击计算[J]. 振动与冲击, 2018, 37(22):30-35+42.
GUO Fang, FANG Zongde, ZHANG Xijin. Calculation of meshing impact of modified gear considering measured base joint error[J]. Journal of Vibration and Shock, 2018, 37(22):30-35+42.
[6] GUO F, FANG Z D. A new algorithm to solve meshing-in impact considering the measured pitch error and to investigate its influence on the dynamic characteristics of a gear system[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(03): 395-406.
[7] 贾超, 方宗德. 高速齿轮传递误差和啮入冲击的激励模拟及齿面优化修形[J]. 振动与冲击, 2019, 38(23): 103-109+138.
JIA Chao, FANG Zongde. High speed gear transmission error and meshing impact excitation simulation and tooth surface optimization modification[J]. Journal of Vibration and Shock, 2019, 38(23): 103-109+138.
[8] 贾超, 姚立纲, 张俊, 等. 修形渐开线斜齿轮啮入冲击计算[J]. 西安交通大学学报, 2020, 54(09): 58-65+80.
JIA Chao, YAO Ligang, ZHANG Jun, et al. Calculation of nipping impact of modified involute helical gears[J]. Journal of Xi'an Jiaotong University, 2020, 54(09): 58-65+80.
[9] Jia C, Fang Z D, Yao L, et al. Tooth flank modification to reduce transmission error and mesh-in impact force in consideration of contact for helical gears[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2020, 235(19): 4475-4493.
[10] MU Y M, FANG Z D, LI W L. Impact analysis and vibration reduction design of spiral bevel gears[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233(03): 668-676.
[11] 牟彦铭, 方宗德, 张西金. 弧齿锥齿轮啮入冲击理论分析[J]. 华中科技大学学报(自然科学版), 2018, 46(08): 7-11.
MU Yanming, FANG Zongde, ZHANG Xinjin. Theoretical analysis of the impact of spiral bevel gears[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(08): 7-11.
[12] HE Z Y, ZHANG T, LIN T J. Novel mathematical modelling method for meshing impact of helical gear[J]. Mechanism and Machine Theory, 2020, 152: 103949.
[13] LIU X, FANG Z D, YIN X M, et al. A novel calculation method of long period pinion axial displacement and meshing impact force for double helical gear considering asymmetry error[J]. Mechanism and Machine Theory, 2022, 171: 104775
[14] YANG J, LIN T, HE Z, et al. Novel calculation method for dynamic excitation of modified double-helical gear transmission[J]. Mechanism and Machine Theory, 2022, 167: 104467.
[15] HU S Y, FANG Z D, LIU C, et al. Measurements and theoretical analysis of a helical gear meshing impact signal[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2019, 233(04): 827-839.
[16] HU S Y, FANG Z D, XU Y Q, et al. Meshing impact analysis of planetary transmission system considering the influence of multiple errors and its effect on the load sharing and dynamic load factor characteristics of the system[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2020, 235(1): 57-74.
[17] 刘丽华. 自动检测技术及应用[M]. 清华大学出版社, 2010.
LIU Lihua. Automatic detection technology and application[M]. Tsinghua University Press, 2010.
[18] ISO 6336-1-2006, International Standard[S].
[19] 吉培荣, 李海军, 邹红波. 现代信号处理基础[M]. 北京:科学出版社, 2018.
JI Peirong, LI Haijun, ZOU Hongbo. Fundamentals of modern signal processing[M]. Beijing: Science Press, 2018.
[20] 安颖, 崔东艳, 刘利平. 现代信号处理[M]. 北京:清华大学出版社, 2017.
AN Ying, CUI Dongyan, LIU Liping. Advanced Signal Processing[M]. Beijing: Tsinghua University Press, 2017.
[21] 王峰. 人字齿轮传动系统振动特性分析与试验研究[D]. 西北工业大学, 2014.
WANG Feng. Analysis and experimental study on vibration characteristics of herringbone gear transmission system[D]. Northwestern Polytechnical University, 2014.
[22] 方宗德. 齿轮轮齿承载接触分析(LTCA)的模型和方法[J]. 机械传动, 1998(02): 3-5.
FANG Zongde. Model and method of Gear tooth load contact analysis (LTCA)[J]. Journal of Mechanical Transmission, 1998(02): 3-5.
[23] LIU C, FANG Z D, LIU X, et al. Multibody dynamic analysis of a gear transmission system in electric vehicle using hybrid user-defined elements[J]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2019, 233(1): 30-42.

PDF(2668 KB)

Accesses

Citation

Detail

段落导航
相关文章

/