混凝土拱坝地震非线性响应中的应变率效应研究

董雨1,王国盛1,王进廷2,杜修力1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 71-80.

PDF(3885 KB)
PDF(3885 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 71-80.
论文

混凝土拱坝地震非线性响应中的应变率效应研究

  • 董雨1,王国盛1,王进廷2,杜修力1
作者信息 +

Strain rate effect in seismic nonlinear responses of concrete arch dam

  • DONG Yu1, WANG Guosheng1, WANG Jinting2, DU Xiuli1
Author information +
文章历史 +

摘要

本文通过引入多轴有效硬化函数和S型率相关强度准则,改进了混凝土损伤塑性(CDP)模型,称为S-CDP模型,能够更加合理地反映混凝土材料的应变率效应和三维塑性变形行为。基于S-CDP模型建立了大岗山拱坝的率相关数值模型。利用所建的率相关数值模型,分析了地震作用下坝体混凝土的应变率分布规律、动态增长因子(DIF)的变化规律以及混凝土应变率效应对坝体动力响应的影响。结果表明,S-CDP模型能够合理反映受拉区混凝土材料的率效应,在PGA=0.557g、PGA=0.663g、PGA=0.836g的地震动荷载作用下,拱坝坝体混凝土的动强度增长最多能达到23%,然而并不能保证坝体混凝土的动强度始终提高20%及以上。在水工建筑物抗震设计时,若将混凝土的动强度提高固定的20%,可能会造成计算的损伤结果与实际的损伤有所偏差,动强度提高固定的20%计算得到的损伤结果相较于本文中采用S-CDP模型计算得到的损伤结果偏大。因此在水工建筑物抗震设计时,推荐选用合适的混凝土率相关本构模型进行计算,以尽可能的保证计算的精确度。

Abstract

In this paper, the concrete damage plasticity (CDP) model is improved by introducing multiaxial effective hardening function and S-type rate correlation strength criterion. The improved model is called S-CDP model, which can more reasonably reflect the strain rate effect and three-dimensional plastic deformation behavior of concrete materials. Based on S-CDP model, the rate-dependent numerical model of Dagangshan Arch Dam is established. By using the established rate-dependent numerical model, the distribution law of strain rate of dam concrete under earthquake, the change law of dynamic growth factor (DIF) and the influence of concrete strain rate effect on the dynamic response of dam body are analyzed. The results show that the S-CDP model can reasonably reflect the rate effect of concrete materials in tension zone. Under the earthquake loads of PGA=0.557g、PGA=0.663g and PGA=0.836g, the dynamic strength of arch dam concrete can increase by 23% at most, but it can't always guarantee that the dynamic strength of dam concrete will increase by 20% or more. In the seismic design of hydraulic structures, if the dynamic strength of concrete is increased by 20%, the calculated damage results may deviate from the actual damage. Compared with the damage results calculated by S-CDP model in this paper, the damage results calculated by fixed 20% increase in dynamic strength are larger. Therefore, in the seismic design of hydraulic structures, it is recommended to select the appropriate concrete ratio-related constitutive model for calculation, so as to ensure the accuracy of calculation as much as possible.

关键词

拱坝 / 混凝土 / 应变率效应 / 塑性损伤模型 / 动力增长因子

Key words

arch dam / concrete / strain rate effect / plastic damage model / dynamic growth factor

引用本文

导出引用
董雨1,王国盛1,王进廷2,杜修力1. 混凝土拱坝地震非线性响应中的应变率效应研究[J]. 振动与冲击, 2023, 42(21): 71-80
DONG Yu1, WANG Guosheng1, WANG Jinting2, DU Xiuli1. Strain rate effect in seismic nonlinear responses of concrete arch dam[J]. Journal of Vibration and Shock, 2023, 42(21): 71-80

参考文献

[1] 李德玉, 廖建新, 涂劲,等. 高拱坝抗震安全研究[J]. 水利水电技术. 2019, 50(8): 77-83.
LI Deyu, LIAO Jianxin, Tu Jin, et al. Study on seismic safety of high arch dam [J]. Water Resources and Hydropower Engineering, 2019, 50(8): 77-83.
[2] 李广凯, 郁章涛, 朱凯,等. 混凝土高拱坝抗震安全评价综述[J]. 水电与抽水蓄能. 5.2 (2019): 40-14 .
LI Guangkai, YU Zhangtao, ZHU Kai, et al. Summary of seismic safety evaluation of high concrete arch dam[J]. Hydropower and Pumped Storage, 5.2 (2019): 40-14.
[3] 张伯艳, 李德玉. 高坝极限抗震能力研究方法综述[J]. 水电能源科学. 2014, 32(01): 63-65.
ZHANG Boyan, LI Deyu. Summary of research methods of high ultimate seismic capacity of dams[J]. Water Resources and Power, 2014, 32(01): 63-65.
[4] ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete[J]. ASTM Journal. 1917, 17(2): 364-377.
[5] LU D C, WANG G S, DU X L, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering 103 (2017): 124-37.
[6] SWAN G., COOK J., BRUCE S., et al. Strain rate effects in kimmeridge bay shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1989, 26(2): 135- 149.
[7] REINHARDT H W, ROSSI P., VAN MIER J G M. Joint investigation of concrete at high rates of loading[J]. Materials and Structures. 1990, 23(3): 213-216.
[8] BAŽANT Z., BAI S., RAVINDRA G. Fracture of rock: effect of loading rate[J]. Engineering Fracture Mechanics. 1993, 45: 393-398.
[9] ROSSI P., TOUTLEMONDE F. Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms[J]. Materials and Structures. 1996, 29(2): 116-118.
[10] 戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报. 2003, 22(2): 177-181.
QI Chengzhi, QIAN Qihu. Physical mechanism of strain rate dependence on dynamic strength of equibrittle rock materials[J]. Journal of Rock Mechanics and Engineering. 2003, 22(2): 177-181.
[11] Qi C Z, Wang M Y, Qian Q H. Strain-rate effects on the strength and fragmentation size of rocks[J]. International Journal of Impact Engineering. 2009, 36(12): 1355-1364.
[12] CUSATIS G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering. 2011, 38(4): 162-170.
[13] OŽBOLT J., SHARMA A., REINHARDT H. Dynamic fracture of concrete-compact tension specimen[J]. International Journal of Solids and Structures. 2011, 48(10): 1534-1543.
[14] 宋玉普. 混凝土的动力本构模型和破坏准则[M]. 北京: 中国科学出版社, 2013.
SONG Yupu. Dynamic constitutive model and failure criterion of concrete[M]. Beijing: Science Press, 2013.
[15] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials[J]. Rock Mechanics and Rock Engineering. 2014, 47(4): 1411-1478.
[16] CHEN X D, WU S X, ZHOU J K. Compressive strength of concrete cores under high strain rates[J]. Journal of Performance of Constructed Facilities, ASCE. 2015, 29(1).
[17] OŽBOLT J., BEDE N., SHARMA A., et al. Dynamic fracture of concrete L-specimen: experimental and numerical study[J]. Engineering Fracture Mechanics. 2015, 148: 27-41.
[18] 张艳红,胡晓,杨陈,等.大坝混凝土强度参数的统计分析[J].水力发电学报,2015,34(06):169-175.
ZHANG Yanhong, HU Xiao, YANG Chen, et al. Statistical analysis of concrete strength parameters of dams[J]. Journal of Hydroelectric Engineering, 2015,34(06):169-175.
[19] 周继凯,吴胜兴,苏盛等.小湾拱坝湿筛混凝土动态弯拉应变率效应试验研究[J].水力发电学报,2009,28(05):140-146.
ZHOU Jikai, WU Shengxing, SU Sheng, et al. Experimental study on dynamic flexural-tensile strain rate effect of wet-screened concrete in Xiaowan arch dam[J]. Journal of Hydroelectric Engineering, 2009,28(05):140-146.
[20] RAPHAEL J M. Tensile strength of concrete[C]. Journal Proceedings. 1984, 81(2): 158-165.
[21] CHOPRA A K. Earthquake analysis design and safety evaluation of concrete arch dams[A]. Proc. Tenth World Conference on Earthquake Engineering, Vol.11, 1992, 6763-6772.
[22] 王建新, 刘西军, 何明杰,等.新抗震规范要求下高拱坝抗震安全研究[J]. 大坝与安全,2021(03):1-5.
WANG Jianxin, LIU Xijun, HE Mingjie,et,al. Study on seismic safety of high arch dam under the requirements of new seismic code[J]. Dam and
Safety, 2021(03):1-5.
[23] LEE J, FENVES G L. A plastic-damaget concrete model for earthquake analysis of dams[J]. Earthquake Engineering & Structural Dynamics 27.9(1998):937-56.
[24] 陈健云, 李静, 林皋. 基于速率相关混凝土损伤模型的高拱坝地震响应分析[J]. 土木工程学报, 36.10 (2003): 46-50.
CHEN Jianyun, LI Jing, LIN Gao. Seismic response analysis of high arch dam based on rate-dependent concrete damage model[J]. Journal of Civil Engineering. 36.10 (2003): 46-50.
[25] 肖诗云, 李宏男, 杜荣强,等. 应变率对拱坝地震反应的影响[J]. 土木工程学报, 38.8 (2005): 5-127.
XIAO Shiyun, LI Hongnan, DU Rongqiang, et al. Influence of strain rate on seismic response of arch dam[J]. Journal of Civil Engineering. 38.8 (2005): 5-127.
[26] DU R Q, QING Z, CHEN S H, et al. Safety evaluation of Dagangshan arch dam resisting strong earthquakes with a rate-dependency anisotropic damage model[J]. Science China Technological Sciences 54.3 (2011): 531-40.
[27] 李晓娜, 王嘉威, 李同春,等. 强震作用下高拱坝抗震安全分析[J]. 西安理工大学学报. 2018 34(3): 332-37.
LI Xiaona, WANG Jiawei, LI Tongchun, et al. Seismic safety analysis of high arch dam under strong earthquake[J]. Journal of Xi 'an University of Technology.
[28] WANG H T, SHEN J Y, WU F, et al. Experimental study on elastic-plastic seismic response analysis of concrete gravity dam with strain rate effect[J]. Soil Dynamics and Earthquake Engineering. 2019, 116: 563-569.
[29] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics. 1998, 124(8): 892-900.
[30] 杜修力, 王阳, 路德春. 混凝土材料的非线性单轴动态强度准则[J]. 水利学报. 2010, 41(03): 300-309.
DU Xiuli, Wang Yang, LU Dechun. Nonlinear uniaxial dynamic strength criterion of concrete[J]. Journal of Water Conservancy. 2010, 41(03): 300-309.
[31] 王国盛. 混凝土材料三维弹塑性动力损伤本构模型研究[D]. 北京:北京工业大学建筑工程学院, 2019.
WANG Guosheng. Study on the three-dimensional elastoplastic dynamic damage constitutive model of concrete[D]. Beijing: The college of architecture and civil engineering, Beijing University of Technology, 2019. (in Chinese)
[32] ZHOU X., LU D C., DU X L., et al. A 3D non-orthogonal plastic damage model for concrete[J]. Computer Methods in Applied Mechanics and Engineering. 2020, 360: 112716.
[33] WANG G S., LU D C., DU X L., et al. A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function[J]. Journal of the Mechanics and Physics of Solids. 2018, 119: 250-273.
[34] JONES P G. The effect of testing speed on strength and elastic properties of concrete[C]. Proc. of ASTM. 1936, 36: 380-391.
[35] 王国盛, 路德春, 杜修力,等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学,35.6 (2018): 58-67.
WANG Guosheng, LU Dechun, DU Xiuli,et al. Study on the mechanism of real dynamic strength and rate effect of concrete[J]. Engineering Mechanics, 35.6 (2018): 58-67.
[36] YU S S., LU Y B., CAI Y . The strain-rate effect of engineering materials and its unified model[J]. Latin American Journal of Solids and Structures. 2013, 10(4): 833-844.
[37] LU D C., ZHOU X., DU X L., et al. 3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition[J]. Journal of Engineering Mechanics. 2020, 146(11): 04020124.
[38] 吴基昌, 邹敬东. 大岗山水电站工程抗震研究综述[J]. 人民长江. 2011, 42(14): 35-38.
WU Jichang, ZOU Jingdong. Summary of seismic research of dagangshan hydropower station project[J]. Yangtze River. 2011, 42(14): 35-38.
[39] 金爱云, 王进廷, 潘坚文. 基于主余震序列的高拱坝极限抗震能力损失研究[J]. 振动与冲击. 41.3 (2022): 82-89.
JIN Aiyun, WANG Jinting, PAN Jianwen. Study on ultimate seismic capacity loss of high arch dam based on main aftershock sequence [J]. Journal of Vibration and Shock. 41.3 (2022): 82-89.
[40] 彭刚, 洪海丰, 陈灯红, 等. 考虑键槽咬合作用的高拱坝非线性横缝模型研究[J]. 振动与冲击, 2022,41(20):216-224.
PENG Gang, HONG Haifeng, CHEN Denghong, et al. Study on nonlinear transverse joint model of high arch dam considering keyway occlusion [J]. Journal of Vibration and Shock , 2022,41(20):216-224.
[41] 龙渝川,周元德,张楚汉. 基于两类横缝接触模型的拱坝非线性动力响应研究[J]. 水利学报. 2005,36(9):1094-1099.
LONG Yuchuan, ZHOU Yuande, ZHANG Chuhan. Study on nonlinear dynamic response of arch dam based on two kinds of transverse joint contact models[J]. Journal of Water Conservancy. 2005, 36(9):1094 -1099.
[42] 何建涛, 马怀发, 张伯艳,等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报. 2010, 41(8): 960-969.
HE Jiantao, MA Huaifa, ZHANG Boyan, et al. Input method and implementation of ground motion with viscoelastic artificial boundary[J].  Journal of Water Conservancy. 2010, 41(8): 960-969.
[43] 邱奕翔, 魏楚函, 武志刚,等.库水模拟对拱坝动力特性的影响分析[J].水力发电学报,2020,39(06):109-120.
QIU Yixiang,WEI Chuhan,WU Zhigang, et al. Analysis of influence of reservoir simulation on dynamic characteristics of arch dam[J]. Journal of Hydroelectric Engineering, 2020,39(06):109-120.
[44] 杜荣强, 林皋, 章青等. 大岗山高拱坝强地震作用下损伤破坏分析[J]. 计算力学学报. 2009, 26(03):347-352.
DU Rongqiang, LIN Gao, ZHANG Qing, et al. Damage analysis of Dagangshan high arch dam under strong earthquake[J]. Journal of Computational Mechanics. 2009, 26(03): 347-352.
[45] 田硕, 范书立, 陈健云. 基于多个响应量的拱坝地震易损性分析[J]. 振动与冲击. 39.1 (2020): 253-88.
TIAN Shuo, FAN Shuli, CHEN Jianyun. Seismic vulnerability analysis of arch dams based on multiple responses[J]. Journal of Vibration and Shock. 39.1 (2020): 253-88.
[46] 龙渝川. 超强地震作用下高拱坝损伤开裂行为研究[J].水力发电学报,2012,31(05):178-183+190.
LONG Yuchuan. Study on damage and cracking behavior of high arch dam under super-strong earthquake[J]. Journal of Hydroelectric Engineering, 2012,31(05):178-183+190.

PDF(3885 KB)

Accesses

Citation

Detail

段落导航
相关文章

/