基于近似模型的大型汽轮发电机定子端部绕组动力响应预测研究

赵洋1,2,3, 何乐1, 刘晋珲1, 陈翔1,2,马莹1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 81-87.

PDF(2369 KB)
PDF(2369 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (21) : 81-87.
论文

基于近似模型的大型汽轮发电机定子端部绕组动力响应预测研究

  • 赵洋1,2,3,何乐1,刘晋珲1,陈翔1,2,马莹1,2
作者信息 +

Dynamic response prediction of large turbo-generator stator end winding based on approximate model

  • ZHAO Yang1,2,3, HE Le1, LIU Jinhui1, CHEN Xiang1,2, MA Ying1,2
Author information +
文章历史 +

摘要

针对电磁力作用下大型汽轮发电机定子端部绕组动力响应建模及计算复杂问题,提出一种基于数据驱动的支持向量回归(SVR)动力响应预测方法。通过少量典型样本构建某600MW汽轮发电机动力响应近似模型,从而代替复杂耗时的有限元模型预测不同结构参数下的动态性能。以端部绕组鼻端位移峰值作为动力响应的关键指标,首先选取绑环刚度、径向支架刚度以及滑销和径向支架之间的固定约束数目为设计变量,通过正交试验设计获取样本,在ABAQUS中分别建立试验样本对应的有限元模型,再对其进行计算获得鼻端位移时程曲线;然后通过遗传算法(GA)对SVR中的参数寻优构建端部绕组动力响应的近似模型,对比结果显示,该近似模型精度优于基于响应面法(RSM)和克里金插值法(Kriging)构建的预测模型;最后基于近似模型探讨了设计参数对鼻端位移峰值的影响规律。该方法可用于后续的优化设计以及装备数字孪生系统中电气和力学性能的实时求解与计算。

Abstract

A dynamic response prediction method based on data driven support vector regression (SVR) is proposed to resolve the complex modeling and calculating problem of the dynamic response of large turbo-generator stator end winding under electromagnetic force. In this method, the approximate dynamic response model of a 600MW turbo-generator is constructed by a small number of typical samples to efficiently predict the dynamic performance under different parameter structures, thus replacing the complex and time-consuming finite element model. The peak displacement at the nose of the end winding is taken as the key index of dynamic response. Firstly, the stiffness of the rings, the stiffness of the radial braces and the number of pins bonded to the radial braces are selected as design variables. The samples are obtained through orthogonal experimental design, and the corresponding finite element models of the test samples are established in ABAQUS. After that, the finite element models are calculated to obtain the time history curve of displacement at the nose of the end winding. Secondly, a genetic algorithm (GA) is used to optimize the parameters in SVR to construct an approximate model of the dynamic response of the end winding. The comparison results show that the accuracy of the dynamic response approximate model based on GA-SVR is better than that based on the response surface method (RSM) and Kriging interpolation method (Kriging). Finally, the influence of the parameters on the peak displacement of the nose of the end winding is discussed based on the approximate model. The method presented in this paper can be used in the subsequent optimization design, and also can be used in the real-time solution and calculation of electrical and mechanical properties in the digital twin systems.

关键词

端部绕组 / 动力响应 / 支持向量回归 / 遗传算法 / 近似模型

Key words

Stator end winding / Dynamic response / Support vector regression / Genetic algorithm / Approximate model

引用本文

导出引用
赵洋1,2,3, 何乐1, 刘晋珲1, 陈翔1,2,马莹1,2. 基于近似模型的大型汽轮发电机定子端部绕组动力响应预测研究[J]. 振动与冲击, 2023, 42(21): 81-87
ZHAO Yang1,2,3, HE Le1, LIU Jinhui1, CHEN Xiang1,2, MA Ying1,2. Dynamic response prediction of large turbo-generator stator end winding based on approximate model[J]. Journal of Vibration and Shock, 2023, 42(21): 81-87

参考文献

[1] Kapler J, Letal J, Sasic M, et al. Recent endwinding vibration problems in air-cooled turbine generators[C]//CIGRE 2014. Paris: CIGRE, 2014.
[2] 朱二夯, 黄浩, 边旭, 等. 大型同步调相机定子压圈涡流损耗计算及降损方法[J]. 电机与控制学报, 2019, 23(10): 33-40.
Zhu Erhang, Huang Hao, Bian Xu, et al. Research on calcualtion and decrease of eddy current losses in stator clamping ring for a large synchronous condenser[J]. Electric Machines and Control, 2019, 23(10): 33-40.
[3] 梁艳萍, 张沛, 陈晶, 等. 1000MW空冷水轮发电机端部结构件涡流损耗[J]. 电工技术学报, 2012, 27(12): 213-218.
Liang Yanping, Zhang Pei, Chen Jing, et al. Eddy current losses of end structures for 1 000MW air-cooled hydro-generator[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 213-218.
[4] 何玉灵, 张文, 张钰阳, 等. 发电机定子匝间短路对绕组电磁力的影响[J]. 电工技术学报, 2020, 35(13): 2879-2888.
He Yuling, Zhang Wen, Zhang Yuyang, et al. Effect of stator inter-turn short circuit on winding electromagnetic forces in generators[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2879-2888.
[5] 万书亭, 姚肖方, 豆龙江. 发电机定子端部绕组电磁力特性与鼻端扭矩计算[J]. 振动.测试与诊断, 2014, 34(05): 920-925+980.
Wan Shuting, Yao Xiaofang, Dou Longjiang. Computation and characte ristic analysis on electromagnetic force and nose torque of stator end windings in turbo-generator[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(05): 920-925+980.
[6] Sasic M, Jiang H, Stone G C. Requirements for fiber optic sensors for stator endwinding vibration monitoring[C]//2012 IEEE International Conference on Condition Monitoring and Diagnosis. Bali, Indonesia: IEEE, 2012.
[7] Li Shengtao, Li Jianying. Condition monitoring and diagnosis of power equipment: review and prospective[J]. The Institution of Engineering and Technology, 2017, 2(2): 82-91.
[8] 胡宇达, 邱家俊, 卿光辉. 大型汽轮发电机定子端部绕组整体结构的电磁振动[J]. 中国电机工程学报, 2003, 23(7): 93-98,116.
Hu Yuda, Qiu Jiajun, Qing Guanghui. Electromagnetic vibration of integrity end winding of large turbo-generator stator[J]. Proceedings of the CSEE, 2003, 23(7): 93-98,116.
[9] 胡宇达, 邱家俊. 大型发电机定子端部绕组振动的叠层加筋圆锥壳模型[J]. 工程力学, 2005, 22(2): 189-194.
Hu Yuda, Qiu Jiajun. A stiffened laminated composite conical shell model for vibration of large generator end winding[J]. Engineering Mechanics, 2005, 22(2): 189-194.
[10] 张青雷, 段建国, 周莹, 等. 新型汽轮发电机定子端部固定结构动力学特性研究及计算工具开发[J]. 中国电机工程学报, 2018, 38(5): 4555-4565.
Zhang Qinglei, Duan Jianguo, Zhou Ying, et al. Dynamic characteristics research and calculating tool development of fixed structure of stator end in a novel turbine generator[J]. Proceedings of the CSEE, 2018, 38(5): 4555-4565.
[11] Zhao Yang, Yan Bo, Chen Changlin, et al. Parametric study on dynamic characteristics of turbogenerator stator end winding[J]. IEEE Transactions on Energy Conversion. 2014, 29(1): 129-137.
[12] 赵洋, 严波, 曾冲, 等. 大型汽轮发电机定子端部电磁力作用动态响应分析[J]. 电工技术学报, 2016, 31(5): 199-206.
Zhao Yang, Yan Bo, Zeng Chong, et al. Dynamic response analysis of large turbogenerator stator end structure under electromagnetic forces[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 199-206.
[13] Zhao Yang, Yan Bo, Zeng Chong, et al. Optimal scheme for structural design of large turbogenerator stator end winding[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1423-1432.
[14] Hu Shenglong, Zuo Shuguang, Liu Mingtian, et al. Method for acquisition of equivalent material parameters considering orthotropy of stator core and windings in SRM[J]. IET Electric Power Applications, 2019, 13(4): 580-586.
[15] Lange S, Pfost M. Validation and verification of a structural mechanical stator end-winding region model[C]//2019 11th IEEE International Electric Machines & Drives Conference. San Diego, USA: IEEE, 2019.
[16] Lange S, Pfost M. Analysis of the thermal influence on the vibrational behavior of the stator end-winding region[C]//2019 International Aegean Conference on Electrical Machines and Power Electronics & 2019 International Conference on Optimization of Electrical and Electronic Equipment. Istanbul, Turkey: IEEE, 2020.
[17] 何玉灵, 孙凯, 孙悦欣, 等. 气隙轴向静偏心对发电机定子-绕组受载及振动的影响[J]. 振动工程学报, 2022, 35(03): 745-759.
HE Yuling,SUN Kai,SUN Yuexin, et al. Impact of axially static air-gap eccentricity on load and vibration of stator-winding system in generator[J]. Journal of Vibration Engineering, 2022, 35(03): 745-759.
[18] He Yuling, Zhang Wen, Xu Mingxing, et al. Rotor loss and temperature variation under single and combined faults composed of static air-gap eccentricity and rotor interturn short circuit in synchronous generators[J]. IET Electric Power Applications, 2021, 15(11): 1529-1546.
[19] Zhao Yang, Xiao Yang, Lu Sheng, et al. Investigation on large turbo-generator stator end winding dynamic characteristics based on response surface method[J]. Journal of Power Electronics, 2021, 21(10): 1473-1493.
[20] 邓聪颖, 冯义, 魏博, 等. 基于SVR-GA算法的广义加工空间机床切削稳定性预测与优化研究[J]. 仪器仪表学报, 2019, 40(10): 227-236.
Deng Congying, Feng Yi, Wei Bo, et al. Research on the prediction and optimization of machine tool cutting stability in generalized manufacturing space based on support vector regression machine and genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2019, 40(10): 227-236.

PDF(2369 KB)

424

Accesses

0

Citation

Detail

段落导航
相关文章

/