非对称开孔沉箱式防护设施撞击损伤实验研究

徐万海,李航,贺子琪

振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 177-183.

PDF(1773 KB)
PDF(1773 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 177-183.
论文

非对称开孔沉箱式防护设施撞击损伤实验研究

  • 徐万海,李航,贺子琪
作者信息 +

Experimental study on the impact damage of unsymmetrically perforated caisson protection facilities

  • XU Wanhai,LI Hang,HE Ziqi
Author information +
文章历史 +

摘要

圆筒式沉箱设施作为水下生产系统的新型防护结构,其在落锚撞击作用下的损伤问题,是工程领域和学术领域长期关注的焦点与难点。本文通过模型实验方法,对特殊的非对称开孔沉箱式防护设施撞击损伤特性进行研究,选用渤海通航区某水下生产系统沉箱式防护设施和该设施所在海域落锚作为原型,通过量纲分析,以撞击速度为主要相似性参数,确定了1:11的模型实验相似比,对沉箱式结构和落锚进行缩比尺模型实验。重点关注落锚速度、落锚质量和撞击位置对非对称开孔沉箱式防护结构的损伤影响规律。研究结果表明:开孔附近区域,撞击能量主要以挠曲变形形式耗散,也通过振动形式耗散,撞击产生的损伤以挠曲变形为主,损伤程度较为严重;距开孔区域较远位置,撞击能量主要以振动形式耗散,撞击产生损伤以凹陷变形为主,损伤程度较小。

Abstract

Caisson protection facilities is a new type of protective structure for underwater production system. Its damage under the impact of anchor dropping is the center of attention in engineering and academic fields. This paper analyzed the impact damage characteristics of the special unsymmetrical perforated caisson type protection facilities through model tests. The test prototypes are the caisson type protection facilities of an underwater production system in the navigation area of Bohai Sea and the anchor drop in the sea area of the facilities. By dimensional analysis, taking the impact speed as the main similarity parameter, the model test similarity ratio of 1:11 is determined, and the caisson type structure and anchor drop are simulated by scaled experiments. This paper focuses on the structural damage characteristics of the caisson type protective structure with asymmetric openings under different anchor dropping speeds, different anchor dropping masses and different impact positions. The results show that in the area near the opening hole, the impact energy is partially dissipated in the form of flexural deformation and partially dissipated in the form of vibration. The damage caused by impact is mainly flexural deformation, and the impact damage is large; Far away from the hole area, the impact energy is mainly dissipated in the form of vibration. The damage caused by impact is mainly concave deformation, and the impact damage is small.

关键词

沉箱防护设施 / 撞击损伤 / 非对称开孔 / 模型实验

Key words

Model test / Asymmetric openings / Impact damage / Caisson protection facilities;

引用本文

导出引用
徐万海,李航,贺子琪. 非对称开孔沉箱式防护设施撞击损伤实验研究[J]. 振动与冲击, 2023, 42(22): 177-183
XU Wanhai,LI Hang,HE Ziqi. Experimental study on the impact damage of unsymmetrically perforated caisson protection facilities[J]. Journal of Vibration and Shock, 2023, 42(22): 177-183

参考文献

[1] Logsdon G A, Field A J. BOP and wellhead protection/subsea arctic caisson [C]// Offshore Technology Conference. Houston, Texas, USA: OnePetro, 1983.353-363.
[2] 张大为, 周爽. 混凝土式沉箱防护结构在水下生产系统中的应用研究 [J]. 石化技术, 2020, 27(7):128-130.
ZHANG Da-wei, ZHOU Shuang. Protection Technology of the Caisson in Subsea Production Stress Analysis of Damaged Submarine Pipeline Using Finite Element Method System[J]. Petrochemical Industry Technology, 2020, 27(7):128-130.
[3] DNV. Risk Assessment of Pipeline Protection. DNV-RP-F107[S]. Norway: Det Norsk Veritas, 2010.
[4] Nakayama S, Kiyomiya O. Depth of penetration of anchors into seabottom through anchoring tests [R]. Tokyo (Japan): Ministry of Transport, Port and Harbor Research Institute, 1975.
[5] 于洋, 房家胜, 姜海.自由下落抛锚时锚的运动数学模型 [J].中国航海, 2016, 39(2): 71-75.
YU Yang, FANG Jia-sheng, Jiang H. Mathematical model of anchor motion in free fall anchoring [J]. China navigation, 2016, 39 (2): 71-75
[6] Kim Y H, Chow S H, Hossain M S, et al. Fish anchor diving behaviour: confirmation through field tests in the Swan River [J]. Géotechnique Letters, 2022, 12(1): 60-67.
[7] Sjoblom P O, Hartness J T, Cordell T M. On low-velocity impact testing of composite materials [J]. Journal of composite materials, 1988, 22(1): 30-52.
[8] Liu D, Malvern L E. Matrix cracking in impacted glass/epoxy plates[J]. Journal of Composite Materials, 1987, 21(7): 594-609.
[9] Drover E, Kenny S. Finite Element Modeling of Iceberg Interaction with Subsea Protection Structures [C]//OTC Arctic Technology Conference. Houston, Texas, USA: OnePetro, 2012.
[10] Serré N. Numerical modelling of ice ridge keel action on subsea structures [J]. Cold Regions Science and Technology, 2011, 67(3): 107-119.
[11] Zulkifli M Z B. Dropped Object Protection Modelling for Subsea Equipment [D]. Bandar Seri Iskandar: University Technology PETRONAS, 2016.
[12] Wan J. Computational Fluid Dynamics (CFD) Investigations of flow past subsea cover [D]. uis, 2021.
[13] Huang Z, Wang H, Zhang W, et al. Research on Impact Energy and Damage of Subsea Protection Structures by Trawling Board[C]//The 32nd International Ocean and Polar Engineering Conference. OnePetro, 2022.
[14] Alwarthan A I, Chung J S, Huttelmaier H P, et al. Effect of Ship Anchor Impact in Offshore Pipeline [C]//Proceedings of the Third International Offshore and Polar Engineering Conference. Singapore: ISOPE, 1993, 2, 54-61.
[15] Pal B, Salpekar V Y. Stress analysis of damaged submarine pipeline using finite element method [C]// International Society of Offshore and Polar Engineers. Brest, France: OnePetro, 1999.
[16] Wang Y, Qian X, Liew J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. Stress Analysis of Damaged Submarine Pipeline Using Finite Element Method [J]. International Journal of Impact Engineering, 2014, 72:1-16.
[17] 杨秀娟, 修宗祥,闫相祯等. 海底管道受坠物撞击的三维仿真研究 [J]. 振动与冲击, 2009, 28(11):47-50.
YANG Xiu-juan, XIU Zong-xiang, YAN xiang-zhen, et al. 3D simulation of submarine pipeline impacted by dropped objects [J]. Journal of Vibration and Shock, 2009, 28(11):47-50.
[18] 欧阳颖. 基于船舶抛锚动态仿真的海底管道损伤研究[D]. 湖北: 武汉理工大学, 2018.
OU Yang-ying. Research on damage of submarine pipeline based on dynamic simulation of ship’s anchoring [D]. Hubei: Wuhan University of Technology, 2018.
[19]  Tian Y, Chai W, El Borgi S, et al. Assessment of submarine pipeline damages subjected to falling object impact considering the effect of seabed [J]. Marine Structures, 2021, 78: 102963.
[20]  Guo X, Nian T, Fan N, et al. Optimization design of a honeycomb-hole submarine pipeline under a hydrodynamic landslide impact [J]. Marine Georesources & Geotechnology, 2021, 39(9): 1055-1070.

PDF(1773 KB)

Accesses

Citation

Detail

段落导航
相关文章

/