摘要
针对惯容系统在多自由度结构中的应用和布置方案研究不足的问题,提出多自由度惯容系统响应频域解及谱矩的计算方法,并基于响应频域解及谱矩表达式确定了惯容系统的布置方案。通过引入状态变量将结构运动方程和混联Ⅰ型惯容系统的微分型本构关系转化为用矩阵形式表示的状态方程,进而推导了结构位移、速度、层间位移角等系列响应的频域统一解。然后运用功率谱二次分解法将响应功率谱转化为二次分解式(圆频率与复特征值平方和倒数的线性组合形式),并将其代入谱矩的定义式,获得了位移、速度等系列响应的0-2阶谱矩。最后,以一栋18层的结构为例,验证了所提封闭解的正确性;分析了复特征值个数对结构响应精度的影响;确定并探究了惯容系统在多层结构中布置方案的可行性。结果表明:所提谱矩的封闭解正确适用;高阶振型对结构响应的影响较弱,考虑前若干振型可达到较高的计算精度;所提惯容系统布置方案具有简单易行且效果良好的特点。
Abstract
Aiming at the problem of insufficient research on the application and arrangement scheme of inertial-capacity system in multi-degree-of-freedom structures, the calculation method of response frequency domain solution and spectral moment of multi-degree-of-freedom inertial capacitance system is proposed. And the arrangement scheme of inertial capacitance system is determined based on the response frequency domain solution and spectral moment expression. By introducing state variables to transform the structural equations of motion and the differential-type intrinsic structure relations of the series–parallel layout I inerter system (SPIS-I) into state equations expressed in matrix form. Then, we derive a unified solution in the frequency domain for the series response of structural displacements, velocities, and interstory displacement angles. Next, the quadratic orthogonalization method(QOM) is used to convert the response power spectrum into quadratic decomposition formula (linear combination form of the inverse of the sum of the square of the circular frequency and the square of the complex eigenvalue). Immediately after substituting the power spectral equation into the defining equation of the spectral moment, the 0-2nd order spectral moment of the series response of displacement, velocity, etc. is obtained. Finally, an 18-story structure is used as an example to verify the correctness of the proposed closure solution; the influence of the number of complex eigenvalues on the accuracy of the structural response is analyzed; the feasibility of the arrangement scheme of the inertial capacity system in a multi-story structure is explored. The results show that: the proposed closed solution for the spectral moments is correct and applicable; the influence of higher-order vibration patterns on the structural response is weak, and a high calculation accuracy can be achieved by considering the first few vibration patterns.The arrangement scheme of the inertial capacitance system proposed in this paper has the characteristics of simple and easy implementation and good effect.
关键词
混联Ⅰ型惯容系统 /
随机地震响应 /
功率谱二次分解法 /
0-2阶谱矩 /
布置方案
{{custom_keyword}} /
Key words
series–parallel layout I inerter system (SPIS-I) /
random earthquake response /
the quadratic orthogonalization method(QOM) /
0-2 order spectral moment /
layout plan
{{custom_keyword}} /
李创第1,王瑞勃1,江丽富1,葛新广2.
多自由度混联I型惯容减震系统地震响应分析[J]. 振动与冲击, 2023, 42(22): 19-28
LI Chuangdi1,WANG Ruibo1,JIANG Lifu1,GE Xinguang2.
Seismic response analysis of multi-degree-of-freedom structures with a series-parallel layout Ⅰ inerter system[J]. Journal of Vibration and Shock, 2023, 42(22): 19-28
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GAI P,SPENCER B,XU Z D. Effect of frequency dependence on the seismic performance of linear viscoelastic base-isolated structures[J]. Soil Dynamics and Earthquake Engineering,2020,139:106396.
[2] 曹胜涛,李志山,刘付钧,等. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学,2019,36(S1):17-24.
CAO Shengtao,LI Zhishan,LIU Fujun,et al. Progress in research and application of energy-dissipated technology Explicit nonlinear time history analysis of energy dissipation structures based on bouc-wen model[J]. Engineering Mechanics,2019(S1):17-24.
[3] 兰香,潘文,况浩伟,等. 基于层间位移利用率法修正消能减震结构的附加阻尼[J]. 振动与冲击,2017,36(20):64-71.
LAN Xiang,PAN Wen,KUANG Haowei,et al. Correction additional damping of an energy-dissipation structure based on a story drifts utilization ratio method[J]. Journal of Vibration and Shock,2017,36(20):64-71.
[4] 王曙光,马亚楠,杜东升. 减震结构采用Lyapunov方程的阻尼器优化配置方法[J]. 振动工程学报,2020,33(05):901-909.
WANG Shuguang,MA Yanan,DU Dongsheng. Optimization for the arrangement of added dampers of energy dissipation structures by using Lyapunov equation[J]. Journal of Vibration Engineering,2020,(05):901-909.
[5] 禹见达,张湘琦,彭临峰,等. 管式电涡流阻尼力的精确测量及阻尼器优化设计[J]. 振动与冲击,2020,39(03):149-154.
YU Jianda,ZHANG Xiangqi,PENG Linfeng,et al. Optimal design of tubular electric eddy damper and its damping forces accurate measurement[J]. Journal of Vibration and Shock,2020,(03):149-154.
[6] 邱灿星,刘家旺,杜修力. SMA滑动摩擦阻尼器的数值模拟及参数分析[J]. 工程力学,2022,39(08):69-79.
QIU Canxing,LIU Jiawang,DU Xiuli. Numerical simulation and parametric study of shape memory alloy slip friction dampers[J]. Engineering Mechanics,2022,39(08):69-79.
[7] SMITH M C. Synthesis of mechanical networks:The inerter[J]. IEEE Transactions on Automatic Control,2002,47(10):1648-1662.
[8] IKAGO K,SAITO K,INOUE N. Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper[J]. Earthquake Engineering and Structural Dynamics,2012,41(3):453-474.
[9] WANG F C,HONG M F,Chen C W. Building suspensions with inerters[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2010,224(8):1605-1616.
[10] 张瑞甫,曹嫣如,潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学,2019,36(10):8-27.
ZHANG Ruifu,CAO Yanru,PAN Chao. Inertial capacity damping (vibration) system and its research progress[J]. Engineering Mechanics,2019,36(10):8-27.
[11] HU Y L,CHEN M Z Q,SHU Z,et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution[J]. Journal of Sound and Vibration,2015,346:17-36.
[12] KRENK S,HOGSBERG J. Tuned resonant mass or inerter-
based absorbers:unified calibration with quasi-dynamic flexibility and inertia correction[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2016,472(2185):20150718.
[13] PAN C,ZHANG R. Design of structure with inerter system based on stochastic response mitigation ratio[J]. Structural
Control and Health Monitoring,2018,25(6):e2169.
[14] ZHANG R,ZHAO Z,PAN C,et al. Damping enhancement principle of inerter system[J]. Structural Control and Health Monitoring,2020,27(5):e2523.
[15] LAZAR I F,NEILD S A,WAGG D J. Using an inerter‐based device for structural vibration suppression[J]. Earthquake Engineering and Structural Dynamics,2014,43(8):1129-1147.
[16] 潘超,刘媛,张瑞甫,等. 惯容减震系统性能成本控制解析设计方法[J]. 建筑结构学报,2022,43(11):107-116.
PAN Chao,LIU Yuan,ZHANG Ruifu,et al. Performance-
cost design formulae of inerter system[J]. Journal of Building Structures,2022,43(11):107-116.
[17] HOUSNER G W. Characteristics of strong motion earth⁃ quakes[J]. BSSA,1947,37(1):19-31.
[18] KANAI K. An empirical formula for the spectrum of strong earthquake motions[J]. Bulletin of Earthquake Research Institute,University of Tokyo,1961,39(1):86-95.
[19] TAJIMI H. Statistical method of determining the maximum response of building structure during an earthquake[J]. Proc. of the 2nd WCEE,1960,2:781-798.
[20] 金家合,胡聿贤,周锡元. 关于“弹性体系在平稳和平稳化地面运动下的反应”一文中的探讨[R]. 北京:北京科学出版社;1965.
JIN Jiahe,HU Yixian,ZHOU Xiyuan. Discussion on the "Response of Elastic Systems to Smooth and Steady Ground Motion"[R]. Beijing:Beijing Science Press,1965.
[21] 李鸿晶,陈辰. 一种平稳地震地面运动的改进金井清谱模型[J]. 工程力学,2014,31(02):158-163.
LI Hongjing,CHEN Chen. A modified Kanai-Tajimi spectral model for the stationary earthquake induced ground motion process[J]. Engineering Mechanics,2014,31(02):158-163.
[22] 方同. 工程随机振动[M]. 北京:国防工业出版社,1995.
FANG Tong. Random vibration in engineering[M]. Beijing:National Defense Industry Press,1995.
[23] 李创第,丁晓华,陈俊忠,等. 基础隔震结构基于Clough-Penzien谱随机地震响应分析的复模态法[J]. 振动与冲击,2006(05):162-165+199.
LI Chuangdi,DING Xiaohua,CHEN Junzhong,et al. Complex modal method for analysis of radom earthquake response of structures with base isolation on the basis of Clough-Penzien spectrum[J]. Journal of Vibration and Shock,2006(05):162-165+199.
[24] 林家浩,张亚辉. 随机振动的虛拟激励法[M]. 北京:科学出版社,2004.
LIN Jiahao,ZHANG Yahui. Virtual excitation method for random vibration[M]. Beijing:Science Press,2004.
[25] 林家浩,张亚辉,赵岩. 虚拟激励法在国内外工程界的应用回顾与展望[J]. 应用数学和力学,2017,38(01):1-32.
LIN Jiahao,ZHANG Yahui,ZHAO Yan. The Pseudo-Excita
tion Method and Its Industrial Applications in China and Abroad [J]. Applied Mathematics and Mechanics,2017,38(01):1-32.
[26] 葛新广,张梦丹,龚景海,等. 频响函数二次正交法在Davenport风速谱下结构系列响应简明封闭解的应用研究[J]. 振动与冲击,2021,40(21):207-214.
GE Xinguang,ZHANG Mengdan,GONG Jinghai,et al. Application of FRF quadratic orthogonal method in getting concise closed form solutions of structural series responses under Davenport wind speed spectrum[J]. Journal of Vibration and Shock.,2021,40(21):207-214.
[27] GE X G,GONG J H,ZHAO C J,et al. Structural dynamic responses of building structures with non-viscous dampers under Kanai–Tajimi spectrum excitation[J]. Journal of Sound and Vibration,2022,517:116556.
[28] 葛新广,龚景海,李创第,等. 功率谱二次正交化法在随机地震动响应的应用[J]. 振动工程学报,2022,35(03):616-624.
GE Xinguang,GONG Jinghai,LI Chuangdi,et al. Application of quadratic orthogonalization method of response power spectrum to random ground motion response[J]. Journal of Vibration Engineering,2022,35(03):616-624.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}