双箭头负泊松比材料与结构抗冲击防护性能及应用

闫鹏,赵桂平

振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 241-247.

PDF(2734 KB)
PDF(2734 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 241-247.
论文

双箭头负泊松比材料与结构抗冲击防护性能及应用

  • 闫鹏,赵桂平
作者信息 +

Protection properties and application of the materials with double arrowhead negative Poisson’s ratio and structures under impact loading

  • YAN Peng,ZHAO Guiping
Author information +
文章历史 +

摘要

双箭头蜂窝(Double arrowhead honeycombs,DAH)结构具有负泊松比特性,是力学超材料的一种。本文采用有限元数值模拟对不同相对密度的DAH材料吸能特性进行分析,发现随着相对密度增加DAH材料的比吸能指标逐渐下降。通过建立DAH缓冲材料防护结构碰撞模型研究其在撞击刚性地面的过程中具有负泊松比的DAH对结构冲击能量的吸收及对内部物体动态响应的消减。结果表明,DAH缓冲材料能够吸收冲击过程中大量能量,使得内部被保护物体动态响应幅值减小。同时,给出了不同相对密度DAH缓冲材料防护结构在碰撞时临界速度的确定方法。

Abstract

Double arrowhead honeycombs(DAH) material is one of mechanical metamaterial with negative Poisson’s ratio. The energy absorption of DAH’s with different relative densities is explored by using numerical simulations. It can be found that the specific energy absorption of DAH material decreased with the increase of relative density. A collision model for protective structures with DAH cushion material is established to study the impact energy absorption of the structures and dynamic responses attenuation of inner objects during process of colliding with the rigid ground. The results show that DAH cushion material can absorb a large number of impact energy so that the peak value of the dynamic responses of the inner structure protected is reduced. Meanwhile, the critical impact velocity of the protective structures with DAH cushion material during collision is proposed.

关键词

双箭头 / 冲击响应 / 负泊松比 / 防护结构 / 数值模拟

Key words

double arrowhead honeycombs, impact response, negative Poisson&rsquo / s ratio, protective structures, numerical simulations

引用本文

导出引用
闫鹏,赵桂平. 双箭头负泊松比材料与结构抗冲击防护性能及应用[J]. 振动与冲击, 2023, 42(22): 241-247
YAN Peng,ZHAO Guiping. Protection properties and application of the materials with double arrowhead negative Poisson’s ratio and structures under impact loading[J]. Journal of Vibration and Shock, 2023, 42(22): 241-247

参考文献

[1] Evans KE, Nkansah MA, Hutchinson I J, Rogers S C. Molecular network design[J]. Nature. 1991, 353(6340): 124-124.
[2] Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982, 382(1782):25-42.
[3] Gibson L J, Ashby M F. Cellular solids: structure and properties (2nd ed) [M]. Cambridge: Cambridge University Press, 1997.
[4] 任鑫,张相玉,谢亿民.负泊松比材料和结构的研究进展. 力学学报, 2019, 51(3): 656-687
Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied
Mechanics, 2019, 51(3): 656-687
[5] 吴文旺,肖登宝,孟嘉旭,等.负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J].力学学报,2021,53(03):611-638.
Wu W, Xiao D, Meng J, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(03):611-638.
[6] 孙龙,任鑫,张毅,等.一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4): 1813-1823.
SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica, 2022, 39(4):1813-1823(in Chinese).
[7] 赵著杰,侯海量,李典等.胞元结构准静态压缩力学行为及吸能特性研究[J]. 振动与冲击, 2022, 41(17): 101-110.
ZHAO Zhujie, HOU Hailiang, LI Dian, XIA Xichi. Quasi-static compressive mechanical behavior and energy absorption characteristics of cell structure. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(17): 101-110.
[8] Hu L L, Zhou M Z, Deng H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation[J]. Thin-Walled Structures, 2018, 131: 373-384.
[9] Hu L, You F, Yu T. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs[J]. Materials & Design, 2013, 46: 511-523.
[10] Li Y, Chen Z, Xiao D, et al. The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading[J]. International Journal of Impact Engineering, 2020, 137: 103442.
[11] Xiao D, Dong Z, Li Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis[J]. Materials Science and Engineering: A, 2019, 758: 163-171.
[12] 何满潮,王炯,孙晓明,等.负泊松比效应锚索的力学特性及其在冲击地压防治中的应用研究[J].煤炭学报,2014,39(2):214-221.
He Manchao, Wang Jiong, Sun Xiaoming, et al. Mechanics characteristics and applications of prevention and control rock bursts of the negative Poisson’s ratio effect anchor[J]. Journal of China Coal Society,2014,39(2):214-221.
[13] 罗放,杨德庆.连续爆炸冲击下负泊松比超材料防护结构性能研究[J]. 振动与冲击, 2022, 41(2): 74-78.
LUO Fang, YANG Deqing. Protection performance analysis of auxetic structures under continuous explosive impact. Journal of Vibration and Shock, 2022, 41(2): 74-78.
[14] Liu Y, Ma Z D. Nonlinear analysis and design investigation of a negative Poisson’s ratio material[C]. ASME International Mechanical Engineering Congress and Exposition. 2007, 43041: 965-973.
[15] Qiao J, Chen C Q. Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs[J]. Journal of Applied Mechanics, 2015, 82(5): 051007.
[16] Qiao J X, Chen C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J]. International Journal of Impact Engineering, 2015, 83: 47-58.
[17] Wang Y, Zhao W, Zhou G, et al. Suspension mechanical performance and vehicle ride comfort applying a novel jounce bumper based on negative Poisson's ratio structure[J]. Advances in Engineering Software, 2018, 122: 1-12.
[18] Wang Y, Wang L, Ma Z, et al. Finite element analysis of a jounce bumper with negative Poisson’s ratio structure[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(23): 4374-4387.
[19] 白临奇,史小全,刘宏瑞,等.冲击载荷下箭头型负泊松比蜂窝结构动态吸能性能研究[J]. 振动与冲击, 2021,40(11):70-77.
BAI Linqi, SHI Xiaoquan, LIU Hongrui, et al. Dynamic energy absorption performance of arrow type honeycomb structure with negative Poisson’s ratio under impact load[J]. Journal of Vibration and Shock,2021,40(11):70-77.
[20] Gao Q, Liao W H, Wang L, et al. Crashworthiness optimization of cylindrical negative Poisson’s ratio structures with inner liner tubes[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 4271-4286.
[21] Li B, Zhao G, Jian Lu T. A double degree freedom mass-spring-damper-foam collision model for high porosity metallic foams[J]. Journal of applied mechanics, 2012, 79(5).
[22] Xiao D, Zhao G. A collision model for protective structure with gradient metallic cellular material under low velocity impact[J]. Shock and Vibration, 2016, 2016.

PDF(2734 KB)

Accesses

Citation

Detail

段落导航
相关文章

/