基于广义似然比指标引导变分模态分解的港口起重机轴承故障诊断方法

冯文宗,张氢,张建群,孙远韬,秦仙蓉

振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 264-272.

PDF(2092 KB)
PDF(2092 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 264-272.
论文

基于广义似然比指标引导变分模态分解的港口起重机轴承故障诊断方法

  • 冯文宗,张氢,张建群,孙远韬,秦仙蓉
作者信息 +

Generalized likelihood ratio guided VMD method for the fault diagnosis of harbor crane bearings

  • FENG Wenzong, ZHANG Qing, ZHANG Jianqun, SUN Yuantao, QIN Xianrong
Author information +
文章历史 +

摘要

针对港口起重机轴承早期微弱故障特征易被强噪声淹没导致难以提取问题,结合广义似然比(GLR)和变分模态分解算法(VMD)的优势,提出了一种基于GLR引导VMD的算法。同时,针对传统包络谱检测识别故障需要依靠专业知识识别的情况,根据上述算法提出了一种基于包络谱的故障指标故障频率比(RFF)。利用仿真实验信号和实际数据对所提出方法进行验证,并且与其他VMD优化方法进行比较,研究结果表明:所提出算法能够准确提取高噪声强干扰下信号下滚动轴承的故障特征,所提出故障指标RFF能够实现微弱故障诊断。

Abstract

Aiming at the problem that the early weak fault features of harbor crane bearings are easily submerged by strong noise, an algorithm based on generalized likelihood ratio (GLR) and variational modal decomposition (VMD) is proposed by combining the advantages of GLR and VMD. A fault index ratio of fault frequency (RFF) based on envelope spectrum is proposed according to the above algorithm because the traditional envelope spectrum detection and fault identification depends on professional knowledge. The proposed method is validated by simulation experiment signals and real data, and compared with other VMD optimization methods. The results show that the proposed algorithm can accurately extract the fault features of rolling bearings under high noise and strong interference signals, and the proposed fault index RFF can realize weak fault diagnosis.

关键词

滚动轴承 / 故障诊断 / 统计模型 / 变分模态分解 / 特征提取

Key words

Rolling bearing / fault diagnosis / statistical model / variational mode decomposition / feature extraction

引用本文

导出引用
冯文宗,张氢,张建群,孙远韬,秦仙蓉. 基于广义似然比指标引导变分模态分解的港口起重机轴承故障诊断方法[J]. 振动与冲击, 2023, 42(22): 264-272
FENG Wenzong, ZHANG Qing, ZHANG Jianqun, SUN Yuantao, QIN Xianrong. Generalized likelihood ratio guided VMD method for the fault diagnosis of harbor crane bearings[J]. Journal of Vibration and Shock, 2023, 42(22): 264-272

参考文献

[1] Norden E Huang,Zheng Shen,Steven R Long,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences.1998,454(1971):903-995
[2] Jerome Gilles.Empirical wavelet transform.IEEE transactions on signal processing.2013,61(16):3999-4010
[3] Konstantin Dragomiretskiy,Dominique Zosso.Variational mode decomposition.IEEE transactions on signal processing.2013,62(3):531-544
[4] Vikas Sharma,Anand Parey.Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed.Engineering Failure Analysis.2020,107:104204
[5] 王奉涛,柳晨曦,张涛,et al.基于k值优化VMD的滚动轴承故障诊断方法.振动.测试与诊断.2018,38(03):540-547
FT Wang,CX Liu,T Zhang,et al.Fault diagnosis of rolling bearing based on k-optimized VMD.Journal of Vibration, Measurement & Diagnosis.2018,38(3):540-547
[6] 韩朋朋,贺长波,陆思良.基于VMD与增强包络谱的轴承早期故障诊断方法.机电工程.2022,39(07):895-902+926
PP Han, CB He, SL Lu,et al. Bearing incipient fault diagnosis based on VMD and enhanced envelope spectrum.Journal of Mechanical & Electrical Engineering, 2022,39(7):895-902+926
[7] 郑圆,胡建中,贾民平,et al.一种基于参数优化变分模态分解的滚动轴承故障特征提取方法.振动与冲击.2020,39(21):195-202
Y Zhen, JZ hu, JM Ping,et al. A method for rolling bearing fault feature extraction based on parametric optimization VMD. Journal of Vibration and Shock.2020,39(21):195-202
[8] 胡以怀,李从跃,沈威,et al.基于VMD-多尺度排列熵和SVM的船用空压机故障诊断.中国测试:1-8
YH Hu, CY Li, W Shen,et al. Fault diagnosis of marine air compressor based on VMD multi-scale permutation entropy and SVM. China Measurement & Test, :1-8
[9] 张伟,李军霞,陈维望.基于蝙蝠算法优化VMD参数的滚动轴承复合故障分离方法.振动与冲击.2022,41(20):133-141
W Zhang, JX Li, WW Chen. A compound fault feature separation method of rolling bearings based on VMD optimized by the bat algorithm. JOURNAL OF VIBRATION AND SHOCK.2022,41(20):133-141
[10] Jerome Antoni,Pietro Borghesani.A statistical methodology for the design of condition indicators.Mechanical Systems and Signal Processing.2019,114:290-327
[11] Qing Ni,JC Ji,Ke Feng,et al.A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis.Mechanical Systems and Signal Processing.2022,164:108216
[12] Xingxing Jiang,Jun Wang,Juanjuan Shi,et al.A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines.Mechanical Systems and Signal Processing.2019,116:668-692
[13] 张俊,张建群,钟敏,et al.基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断.振动.测试与诊断.2020,40(02):287-296+418
J Zhang, JQ Zhang, M Zhong,et al.Pso-VMD-MCKD based fault diagnosis for incipient damage in wind turbine rolling bearing.Journal of Vibration, Measurement & Diagnosis.2020,40(02):287-296+418
[14] Biao Wang,Yaguo Lei,Naipeng Li,et al.A hybrid prognostics approach for estimating remaining useful life of rolling element bearings.IEEE Transactions on Reliability.2018,69(1):401-412
[15] Renhe Yao,Hongkai Jiang,Xingqiu Li,et al.Bearing incipient fault feature extraction using adaptive period matching enhanced sparse representation.Mechanical Systems and Signal Processing.2022,166:108467
[16] 张萍,张文海,赵新贺,et al.WOA-VMD算法在轴承故障诊断中的应用.噪声与振动控制.2021,41(04):86-93+275
P Zhang, WH Zhang, XH Zhang, et al. Application of WOA-VMD Algorithm in Bearing Fault Diagnosis. Noise and Vibration Control.2021,41(04):86-93+275
[17] 李益波,肖炳林,何威誉,et al.大数据驱动的港口机械状态监测平台研究.港口装卸.2020(01):1-5+48
YB Li, BL Xiao, WY He,et al.Research on Port Machinery Condition Monitoring Platform Driven by Big Data. Port Operation.2020(01):1-5+48

PDF(2092 KB)

Accesses

Citation

Detail

段落导航
相关文章

/