基于拓扑优化的变密度蜂窝结构参数化设计及冲击性能研究

邹震1,2,徐峰祥1,2,徐智钊1,2,蒋舟顺1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 29-39.

PDF(3172 KB)
PDF(3172 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 29-39.
论文

基于拓扑优化的变密度蜂窝结构参数化设计及冲击性能研究

  • 邹震1,2,徐峰祥1,2,徐智钊1,2,蒋舟顺1,2
作者信息 +

Parametric design and impact performance research of variable density honeycomb structure based on topology optimization

  • ZOU Zhen1,2,XU Fengxiang1,2,XU Zhizhao1,2,JIANG Zhoushun1,2
Author information +
文章历史 +

摘要

针对现有梯度蜂窝结构的经验式、非连续变梯度等设计方法,无法充分发挥梯度设计对蜂窝结构冲击性能提升效果的问题。本文基于变密度拓扑优化方法,提出了一种参数化设计的拓扑优化密度映射蜂窝结构,通过改变映射系数、相对密度构建了相应的拓扑优化密度映射蜂窝结构模型。研究了不同冲击速度下,映射系数、相对密度对其面内变形模式、力学响应和能量吸收性能的影响。结果表明:映射系数、相对密度对不同冲击速度下的拓扑优化密度映射蜂窝的面内变形模式具有显著影响,增大映射系数有益于提高其平台应力和比吸能,与相同质量、尺寸的标准蜂窝冲击性能对比结果显示:拓扑优化密度映射蜂窝的峰值应力降低了16.9%、比吸能提高了29.1%。研究表明将变密度拓扑优化方法引入至梯度蜂窝结构的设计可有效提高其冲击性能。

Abstract

In order to solve the problem that the improvement effect of gradient design on honeycomb impact performance cannot be maximized due to the design of empirical gradient distribution and discontinuous variable gradient for existing gradient honeycomb. In this paper, a parametric design with topology-optimized density mapping honeycomb structure is proposed based on the variable density topology optimization method. The corresponding topologically optimized density-mapped honeycomb structure model is established by changing the parameters of relative density and mapping coefficient. The effects of gradient coefficient and relative density on its in-plane impact deformation mode, mechanical response and energy absorption characteristics are studied under different impact velocities. The results show that the mapping coefficients, relative densities and impact velocities have significant effects on the in-plane deformation modes of the topologically optimized density mapped honeycomb, and the increase of the mapping coefficient is beneficial to improve its platform stress and specific absorption energy. The comparison results with the impact performance of standard homogeneous honeycomb of the same mass and size show that the PCF of the topologically optimized density mapped honeycomb is reduced by 16.9%, while the SEA is increased by 29.1%, respectively. It is shown that introducing the topology-optimized continuous variable density method into the design of gradient honeycomb can effectively improve the impact performance of honeycomb structure.

关键词

蜂窝结构 / 拓扑优化 / 面内冲击 / 非均质 / 能量吸收

Key words

honeycomb structure / topology optimization / in-plane impact / heterogeneous / energy absorption

引用本文

导出引用
邹震1,2,徐峰祥1,2,徐智钊1,2,蒋舟顺1,2. 基于拓扑优化的变密度蜂窝结构参数化设计及冲击性能研究[J]. 振动与冲击, 2023, 42(22): 29-39
ZOU Zhen1,2,XU Fengxiang1,2,XU Zhizhao1,2,JIANG Zhoushun1,2. Parametric design and impact performance research of variable density honeycomb structure based on topology optimization[J]. Journal of Vibration and Shock, 2023, 42(22): 29-39

参考文献

[1] DONG L. Mechanical responses of snap-fit Ti-6Al-4V warren-truss lattice structures [J]. International Journal of Mechanical Sciences, 2020, 173.
[2] FENG Y, QIU H, GAO Y, et al. Creative design for sandwich structures: A review [J]. International Journal of Advanced Robotic Systems, 2020, 17(3).
[3] 袁浩, 任凯, 任晓鹏, 等. 蜂窝铝夹芯板抗侵彻性能研究. 振动与冲击 [J]. 2022, 41(19): 98-103+13.
YUAN Hao, REN Kai, REN Xiaopeng, et al. Anti-penetration performance of honeycomb aluminum sandwich panel. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(19): 98-103.
[4] LI Z, YU Q, ZHAO X, et al. Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body [J]. Advances in Mechanical Engineering, 2017, 9(8).
[5] WANG D, LI S, XIE C. Crashworthiness optimisation and lightweight for front-end safety parts of automobile body using a hybrid optimisation method [J]. International Journal of Crashworthiness, 2022, 27(4): 1193-204.
[6] YU L, GU X, QIAN L, et al. Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight [J]. Thin-Walled Structures, 2021, 161.
[7] GHOSHAL R. Metallic sandwich panels subjected to high-intensity air-blast: Real-gas effects in modeling fluid-structure-interaction [J]. Journal of Applied Physics, 2020, 128(12).
[8] 于征磊, 信仁龙, 陈立新, 等. 增材制造镍钛仿生结构缓冲吸能及自恢复特性研究. 振动与冲击 [J]. 2022, 41(21): 279-85.
YU Zhenglei, XIN Renlong, CHEN Lixin, et al. Buffer energy absorption and self-recovery characteristics of NiTi bionic structure fabricated with additive manufacturing. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(21): 279-285.
[9] SHAHDIN A, MEZEIX L, BOUVET C, et al. Fabrication and mechanical testing of glass fiber entangled sandwich beams: A comparison with honeycomb and foam sandwich beams [J]. Composite Structures, 2009, 90(4): 404-12.
[10] 彭蒙, 刘龙权, 赵剑, 等. 芯体壁厚对Nomex蜂窝夹层结构抗冲击性能的影响. 振动与冲击 [J]. 2016, 35(21): 177-82.
PENG Meng, LIU Longquan, ZHAO Jian, et al. Effect of Cell Wall Thickness on Impact Resistance of Nomex Honeycomb Sandwich Structures. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(21): 177-182.
[11] 韦青, 郭彦峰, 付云岗, 等. 聚乙烯泡沫单填充纸蜂窝夹层管的轴向缓冲吸能特性. 机械工程学报 [J]. 2021, 57(02): 112-20.
WEI Qing, GUO Yanfeng, FU Yungang, et al. Cushioning Energy Absorption of Paper Honeycomb Sandwich Tube Single-filled by Polyethylene Foam under Axial Drop Impact[J]. Journal of Mechanical Engineering, 2021, 57(2): 112-120.
[12] 刘燕峰, 刘青曼, 陈旭. 阻燃植物纤维蜂窝芯制备及性能研究. 复合材料科学与工程 [J]. 2022, (06): 76-80+128.
LIU Yan-feng, LIU Qing-man, CHEN Xu. Study on preparation and properties of flame retardant plant fiber honeycomb core[J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(6): 76-80.
[13] LIN J S, WANG X, LU G. Crushing characteristics of fiber reinforced conical tubes with foam-filler [J]. Composite Structures, 2014, 116: 18-28.
[14] 罗伟铭, 石少卿, 孙建虎, 等. 铝蜂窝填砂复合夹芯结构的低速冲击响应试验研究. 振动与冲击 [J]. 2018, 37(10): 50-6.
LUO Weimin, SHI Shaoqing, SUN Jianhu, et al. Experimental investigation on the low velocity impact responses of san filled aluminum honeycomb composite sandwich structures. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(10): 50-56.
[15] WANG Z, LIU J. Numerical and theoretical analysis of honeycomb structure filled with circular aluminum tubes subjected to axial compression [J]. Composites Part B-Engineering, 2019, 165: 626-35.
[16] 虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究. 振动与冲击 [J]. 2021, 40(13): 51-9.
YU Kejiong, XU Fengxiang, HUA Lin. In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(13): 51-59.
[17] 沈振峰, 张新春, 白江畔, 等. 负泊松比内凹环形蜂窝结构的冲击响应特性研究. 振动与冲击 [J]. 2020, 39(18): 89-95+117.
SHEN Zhenfen, ZHANG Xinchun, BAI Jiangpan, WU Hexiang. Dynamic response characteristics of re-entrant circular honeycombs with negative Poisson’s ratio. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(18): 89-95.
[18] HU D, WANG Y, SONG B, et al. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing [J]. Composites Part B-Engineering, 2019, 162: 21-32.
[19] ZHANG D, FEI Q, JIANG D, et al. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy [J]. Composite Structures, 2018, 192: 289-99.
[20] 马芳武, 孙昊, 梁鸿宇, 等. 自相似分层蜂窝结构多碰撞工况耐撞性研究. 汽车工程 [J]. 2022, 44(06): 886-92+908.
Fangwu Ma, Hao Sun, Hongyu Liang, et al. Study on Crashworthiness of Self-Similar Hierarchical Honeycomb Structure Under Multiple Collision Conditions [J]. Automotive Engineering, 2022, 44(6): 886-892.
[21] 袁敏, 徐峰祥, 龚铭远. 梯度厚度负泊松比蜂窝材料面内冲击特性. 塑性工程学报 [J]. 2021, 28(06): 192-9.
Yuan min, Xu fengxiang, Gong mingyuan. In-plane impact performance of honeycomb material with gradient thickness and negative Poisson's ratio [J]. Journal of Plasticity Engineering, 2021, 28(06): 192-9.
[22] 乔及森, 李明, 苗红丽. 串联梯度蜂窝结构的面内力学性能. 塑性工程学报 [J]. 2021, 28(11): 115-23.
Qiao jisen, Li ming, Miao Hongli. In-plane mechanical property of tandem gradient honeycomb structures [J]. Journal of Plasticity Engineering, 2021, 28(11): 115-23.
[23] ZHANG P, TOMAN J, YU Y, et al. Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation [J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2015, 137(2).
[24] JIA J, DA D, LOH C-L, et al. Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata [J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 757-70.
[25] 邢昊, 敬石开, 张贺, 等. 拓扑优化密度映射的非均匀蜂窝结构设计方法. 计算机辅助设计与图形学学报 [J]. 2017, 29(04): 734-41.
Xing Hao, Jing Shikai, Zhang He, et al. A Non-Uniform Honeycomb Design Method Based on Topology Optimization [J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(04): 734-41.
[26] 赵芳垒, 敬石开, 刘晨燕. 基于局部相对密度映射的变密度多孔结构设计方法. 机械工程学报 [J]. 2018, 54(19): 121-8.
ZHAO Fanglei, JING Shikai, LIU Chenyan. Variable Density Cellular Structure Design Method Base on Local Relative Density Mapping [J]. Journal of Mechanical Engineering, 2018, 54(19): 121-128.
[27] RIETZ A. Sufficiency of a finite exponent in SIMP (power law) methods [J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 159-63.
[28] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs - a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161-82.
[29] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能. 爆炸与冲击 [J]. 2012, 32(05): 475-82.
ZHANG Xin-chun, LIU Ying, LI Na. In-plane dynamic crushing of honeycombs with negative Poissons ratio effect [J]. Explosion And Shock Waves, 2012, 32(5): 475-482.

PDF(3172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/