涡轮增压器喷嘴环冲蚀磨损后气动特性研究

温华兵1,王家昊1,於克良1,郭俊华1,刘红丹2,刘扬2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 312-321.

PDF(2231 KB)
PDF(2231 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 312-321.
论文

涡轮增压器喷嘴环冲蚀磨损后气动特性研究

  • 温华兵1,王家昊1,於克良1,郭俊华1,刘红丹2,刘扬2
作者信息 +

Influence of surface roughness on the aerodynamic characteristics of the nozzle ring of a variable mixed-flow turbocharger

  • WEN Huabing1, WANG Jiahao1, YU Keliang1, GUO Junhua1, LIU Hongdan2 , LIU Yang2
Author information +
文章历史 +

摘要

船用柴油机排放尾气中的固体颗粒会对可变混流涡轮造成冲蚀磨损,导致喷嘴环表面材质剥落,表面粗糙度增加,降低喷嘴环使用寿命。本研究利用ANSYS CFX软件,基于气固两相流的欧拉-拉格朗日法和Finnie磨损模型,研究不同开度下,磨损产生的表面粗糙度对喷嘴环流场、静压和涡轮性能的影响。研究表明:喷嘴环吸力面和压力面两侧的流动边界层厚度、静熵、湍流动能和表面摩擦系数均随粗糙度的增大而增大,导致边界层附近的流动损失增大、气体内能增加、能量耗散增大;喷嘴环两侧的静压差随粗糙度的增大而增大,使得喷嘴环结构载荷增大,可能会降低喷嘴环使用寿命;随着表面粗糙度增大,涡轮效率随之降低,但降低速率却有所减小,对不同开度的影响程度也不同。

Abstract

Solid particles in the exhaust gas of a marine diesel engine can cause erosive wear on a variable-mix turbine, resulting in material spalling from the nozzle ring surface, increased surface roughness, and reduced nozzle ring service life. In this study, ANSYS CFX software is used to investigate the effects of surface roughness from wear on the nozzle ring flow field, static pressure and turbine performance under different openings based on Euler-Lagrange method and Finnie wear model for gas-solid two-phase flow. The study shows that: the thickness of the flow boundary layer, static entropy, turbulent kinetic energy and surface friction coefficient on both sides of the nozzle ring suction and pressure surfaces increase with increasing roughness, resulting in increased flow loss near the boundary layer, increased gas internal energy and increased energy dissipation; the static pressure difference between the two sides of the nozzle ring increases with increasing roughness, which makes the nozzle ring structure load increase and may reduce the nozzle ring life; with the surface roughness increases, the turbine efficiency decreases, but the rate of reduction is reduced, the degree of impact on the different degrees of opening is also different.

关键词

可变混流涡轮喷嘴环 / 尾气颗粒 / 冲蚀磨损 / 表面粗糙度 / 数值仿真

Key words

Variable mixed flow turbine nozzle ring / Exhaust particles / Erosion wear / Surface roughness / Numerical simulation

引用本文

导出引用
温华兵1,王家昊1,於克良1,郭俊华1,刘红丹2,刘扬2. 涡轮增压器喷嘴环冲蚀磨损后气动特性研究[J]. 振动与冲击, 2023, 42(22): 312-321
WEN Huabing1, WANG Jiahao1, YU Keliang1, GUO Junhua1, LIU Hongdan2,LIU Yang2. Influence of surface roughness on the aerodynamic characteristics of the nozzle ring of a variable mixed-flow turbocharger[J]. Journal of Vibration and Shock, 2023, 42(22): 312-321

参考文献

[1] 黄立,陈晓轩,李先南,张文正,王新权,黄敏.船用柴油机涡轮增压技术发展现状[J].推进技术,2020,41(11):2438-2449.
Huang L, Chen X, Li X et al. Development Status of Marine Diesel Engine Turbocharging Technology[J]. Propulsion Technology, 2020, 41(11): 2438-2449.
[2] Feneley A J, Pesiridis A, Andwari A M. Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting-A Review[J]. Renewable and Sustainable Energy Reviews, 2016, 71: 959-975.
[3] Gao J, Liu Y, Zheng Q, et al. Advances in aerodynamic, structural design and test technology of variable geometry turbines[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(2):364-390.
[4] Shanov V, Tabakoff W. Erosion resistance of coatings for metal protection at elevated.
[5] Hamed A A, Tabakoff W, Rivir R B, et al. Turbine Blade Surface Deterioration by Erosion[J]. Transaction of the Asme Journal of Turbomachinery, 2005, 127(3):445-452.
[6] Evstifeev A, Kazarinov N, Petrov Y, et al. Experimental and theoretical analysis of solid particle erosion of a steel compressor blade based on incubation time concept[J]. Engineering Failure Analysis, 2018, 87:15-21.
[7] Panakarajupally R P, Mirza F, Rassi J E, et al. Solid particle erosion behavior of melt-infiltrated SiC/SiC ceramic matrix composites (CMCs) in a simulated turbine engine environment[J]. Composites Part B Engineering, 2021, 216:108860.
[8] Azimian M, Bart H J. Computational analysis of erosion in a radial inflow steam turbine[J]. Engineering Failure Analysis, 2016, 64:26-43.
[9] Xiao Y Q, Yang L, Zhou Y C, et al. Dominant parameters affecting the reliability of TBCs on a gas turbine blade during erosion by a particle-laden hot gas stream[J]. Wear, 2017, 390-391:166-175.
[10] Biglarian M, Momenilarimi M, Ganji B, et al. Prediction of erosive wear locations in centrifugal compressor using CFD simulation and comparison with experimental model[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41:106.
[11] Finnie I. Erosion of surfaces by solid particles[J]. Wear, 1960, 3(2):87-103.
[12]张鹤,刘马林,黄志勇,薄涵亮.大颗粒与壁面碰撞的离散单元法模拟与分析[J].原子能科学技术,2017,51(12):2212-2217.
Zhang H, Liu Ml, Huang Zy, et al.Simulation and analysis of large particle collision with wall using discrete element method [J]. Academic of Atomic Energy Science,2017,51(12):2212-2217.
[13] 赵睿杰,赵有龙,周游,张德胜.90°弯管固液两相流粗颗粒磨损特性的数值模拟[J].华中科技大学学报(自然科学版),2021,49(10):47-52+66.
Zhao Rj, Zhao Yl, Zhou L, et al. Numerical Simulation of Coarse Particle Wear Characteristics of Solid-liquid Two-phase Flow in 90° Curved Pipe [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 201,49(10):47-52+66.
[14]闫乐,周忠宁,张森,刘聪.煤炭颗粒对半开式离心泵磨损的数值研究[J].流体机械,2020,48(01):62-65+41.
Yan L, Zhong N, zhang S, et al. Numerical study on wear of coal particles in a half-open centrifugal pump [J].Fluid Machinery,2020,48(01):62-65+41. 
[15] 关海达, 蔡振兵, 陈志强, 钱 浩, 唐力晨, 朱旻昊. 基于不同支撑结构的薄壁管冲击微动磨损行为研究[J]. 振动与冲击, 2017, 36(21): 65-71.
GUAN Hai-da1 CAI Zhen-bing1 CHEN Zhi-qiang1 QIAN Hao2 TANG Li-chen2 ZHU Min-hao1. Impact fretting wear behaviour of thin-walled tube under different supports. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(21): 65-71.
[16] 杜明超,李增亮,董祥伟,孙召成,范春永,车家琪. 菱形颗粒冲击延性材料的运动行为及凹坑形态研究[J]. 振动与冲击, 2019, 38(20): 97-105.
DU Mingchao,LI Zengliang,DONG Xiangwei,SUN Zhaocheng,FAN Chunyong,CHE Jiaqi. A study on the kinematic behavior and crater shape of rhomboid particle impacting ductile material. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(20): 97-105.
[17]HAMED A A, Tabakoff W, Rivir R B, et al. Turbine BladeSurface Deterioration by Erosion[J]. Journal of Turbomachinery,2005, 127(3): 445-452.
[18] BIGLARIAN M, Momenilarimi M, Ganji B, et al. Prediction of erosive wear locations in centrifugal compressor using CFD simulation and comparison with experimental model[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019, 41(2):106.
[19]  Mirko M, Michele P, Ruggero S P, et al. Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(7):1-8.
[20] Koch C C, Smith L H. Loss Sources and Magnitudes in Axial-Flow Compressors[J]. Journal of Engineering for Gas Turbines & Power, 1976, 98(3):411-424.
[21] SMIRNOV P E, Menter F R. Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term[J]. Journal of Turbomachinery,2009, 131(4):041010.
[22] CHEN X H. Application of computational fluid dynamics (CFD) to flow simulation and erosion prediction in single-phase and multiphase flow[D].Oklahoma:The University of  Tulsa,2004: 1-78.

PDF(2231 KB)

Accesses

Citation

Detail

段落导航
相关文章

/