核岛钢平台支撑框架抗震性能试验对比及支撑优化布置研究

丁振坤1,胡宝琳2,田华1,胡吴彪2,闵昱钧2,徐世安2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 60-70.

PDF(2952 KB)
PDF(2952 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (22) : 60-70.
论文

核岛钢平台支撑框架抗震性能试验对比及支撑优化布置研究

  • 丁振坤1,胡宝琳2,田华1,胡吴彪2,闵昱钧2,徐世安2
作者信息 +

Comparison of seismic performance tests and optimization of the brace layout of a nuclear island steel platform braced frame

  • DING Zhenkun1,HU Baolin2,TIAN Hua1,HU Wubiao2,MIN Yujun2,XU Shian2
Author information +
文章历史 +

摘要

针对核岛钢平台框架“强梁弱柱”的建筑结构形式,为研究不同的支撑结构对其抗震性能改善的影响,分别对普通支撑框架(BMRF)试件和屈曲约束支撑框架(BRBF)试件进行了拟静力试验,对比研究了不同钢框架试件的抗震性能,包括滞回曲线、骨架曲线、等效阻尼比、强度和刚度退化情况等。试验结果表明了屈曲约束支撑框架(BRBF)受力性能的优越性,其极限变形能力和耗能能力分别较普通支撑框架(BMRF)提高了88.67%和654.9%。进一步采用数值分析研究屈曲约束支撑布置方式对核岛钢平台子结构整体受力性能的影响。模拟结果表明:在三种不同的支撑布置方式中,单斜撑型布置方式(SBRBF)不仅可以提高核岛钢平台整体结构的抗震性能,还可以改善原结构的受力性能。

Abstract

Considering the “strong beam and weak column” architectural structure of nuclear island steel platform frame structure, in order to study the influence of different brace structures on its seismic performance improvement, mechanical properties tests of pseudo static loading were carried out respectively for Braced Moment Resisting Frames (BMRF) and Buckling-Restrained Braced Frames (BRBF) specimen, and the seismic performance of different steel frame specimens was studied and compared, including hysteresis curves, skeleton curves and equivalent damping ratio, strength and stiffness degradation, etc. The test results showed that BRBF is superior in mechanical performance, and its ultimate deformation capacity and energy dissipation capacity are 88.67% and 654.9% higher than those of BMRF. On this basis, numerical analysis was adopted to further study the effects of Buckling-Restrained Brace layout on the overall mechanical properties of nuclear island steel platform minor structure. The results of numerical analysis showed that among the three different bracing layouts, single inclined Buckling-Restrained Brace layout (SBRBF) can not only improve the seismic performance of the whole structure, but also improve the mechanical performance of the original frame structure.

关键词

核岛钢平台 / 抗震性能 / 拟静力试验 / 支撑布置方式 / 对比分析

Key words

nuclear island steel platform / seismic performance / pseudo static test / brace layout / contrastive analysis

引用本文

导出引用
丁振坤1,胡宝琳2,田华1,胡吴彪2,闵昱钧2,徐世安2. 核岛钢平台支撑框架抗震性能试验对比及支撑优化布置研究[J]. 振动与冲击, 2023, 42(22): 60-70
DING Zhenkun1,HU Baolin2,TIAN Hua1,HU Wubiao2,MIN Yujun2,XU Shian2. Comparison of seismic performance tests and optimization of the brace layout of a nuclear island steel platform braced frame[J]. Journal of Vibration and Shock, 2023, 42(22): 60-70

参考文献

[1] Mochizuki N, Murata Y, Andou N, Takahashi S. An experimental study on buckling of unbonded braces under centrally applied loads [C]. Annual Meeting of Architectural Institute of Japan, 1980, 9: 1913-1914.
[2] FUJIMOTO M, WADA A, SAEKI E, et al. A study on the unbonded brace encased in buckling-restraining concrete and steel Tube [J]. Journal of Structural Engineering B, 1988, 34: 249-258.
[3] FUJIMOTO M, WADA A, SAEKI E. A study on brace enclosed in buckling-restraining mortar and steel tube [C]. Summaries of Technical Papers of AIJ Annual Meeting. Tokyo, Japan, 1988: 1339-1342.
[4] 芮明倬, 李立树, 贺军利,等. 屈曲约束支撑在古北财富中心高层钢结构中的应用研究[J]. 建筑结构, 2007, 37(5): 25-28.
RUI Mingzhuo, LI Lishu, HE Junli, et al. Study and design of high-rise steel structure office building with unbonded braces [J]. Building Structure, 2007, 37(5): 25-28.
[5] 胡宝琳, 徐庆. “类十字”双阶屈服屈曲约束支撑理论研究及数值分析[J]. 建筑钢结构进展, 2022, 24(01): 98-107.
HU Baolin, XU Qing. Theoretical study and numerical analysis of “cross like” double yield buckling-restrained brace [J]. Progress in Steel Building Structures, 2022, 24(01): 98-107.
[6] Eatherton M, Fahnestock L, & Miller D. Computational study of self-centering buckling-restrained braced frame seismic performance [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(13): 1897-1914.
[7] 徐龙河, 陈鹏. 自复位全钢型防屈曲支撑的工作原理与滞回特性研究[J]. 工程力学, 2020, 37(12): 147-156. Xu Longhe, Chen Peng. The hysteretic behavior and working mechanism of self-centering steel buckling restrained braces [J]. Engineering Mechanics, 2020, 37(12): 147-156.
[8] 郭小康, 李国强. 用可靠度理论确定屈曲约束支撑钢框架的设计原则[J]. 工程抗震与加固改造, 2010, 32(2): 91-95.
GUO Xiaokang, LI Guoqiang. Determination of design principle of steel frames with Buckling-Restrained Braces using reliability theory [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(2): 91-95.
[9] 冯玉龙, 吴京, 孟少平,等. 底部带有屈曲约束支撑的摇摆墙框架结构抗震性能分析[J]. 振动与冲击, 2016, 35(23): 35-40.
FENG Yulong, WU Jing, MENG Shaoping, et al. Aseismic performance analysis of rocking wall frame structures with buckling-restrained braces in base [J]. Journal of Vibration and Shock, 2016, 35(23): 35-40.
[10]  谢钦, 周臻, 孔祥羽,等. 梁柱退化和剪力比对自定心BRB双重体系抗震性能的影响[J]. 振动与冲击, 2018, 37(8): 9-16.
XIE Qin, ZHON Zhen, KONG Xiangyu, et al. The effect of beam-column degradation and shear ratio on seismic performance of self-centering BRB dual systems [J]. Journal of Vibration and Shock, 2018, 37(8): 9-16.
[11] Bosco M, Marino E. Design method and behavior factor for steel frames with buckling restrained braces [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(8): 1243-1263.
[12] 薛彦涛, 金林飞, 韩雪, 等. 钢筋混凝土框架屈曲约束支撑试验研究[J]. 建筑结构, 2013, 43(1): 1-4.
XUE Yantao, JIN Linfei, HAN Xue, et al. Experimental study on buckling-restrained brace of reinforced concrete frame structure [J]. Building structure, 2013, 43(1): 1-4.
[13] 王波, 王静峰, 孙政, 等. 屈曲约束支撑装配式钢管混凝土组合框架抗震试验性能研究[J]. 土木工程学报, 2018, 51(6): 14-22.
WANG Bo, WANG Jingfeng, SUN Zheng, et al. Experimental study on seismic behavior of assembly CFST composite frames with bucking restrained braces [J]. China Civil Engineering Journal, 2018, 51(6): 14-22.
[14] Naghavi M, Rahnavard R, Thomas R J, et al. Numerical evaluation of the hysteretic behavior of concentrically braced frames and buckling restrained brace frame systems [J]. Journal of Building Engineering, 2019, 22: 415-428.
[15] 王静峰, 高翔, 李贝贝, 等. 屈曲约束支撑与钢框架节点板连接的抗震性能试验与分析研究[J]. 土木工程学报, 2019, 52(8): 40-48.
WANG Jingfeng, GAO Xiang, LI Beibei, et al. Seismic performance tests and analysis of connections between bucking restrained braces and steel frames [J]. China Civil Engineering Journal, 2019, 52(8): 40-48.
[16] 张哲, 裴升, 邓恩峰. 高强钢框架-屈曲约束支撑体系抗震性能研究[J]. 振动与冲击, 2022, 41(1): 244-253.
ZHANG Zhe, PEI Sheng, DENG Enfeng. Seismic behavior of high strength steel frame-buckling restrained brace system [J]. Journal of Vibration and Shock, 2022, 41(1): 244-253.
[17] JGJ/T 101-2015建筑抗震试验规程[S]. 北京: 中国建筑工业出版社出版, 2015.
JGJ/T 101-2015 Code for seismic test of building structures [S]. Beijing: China Architecture & Building Press, 2015.
[18] 周云. 粘滞阻尼减震结构设计[M]. 武汉: 武汉理工大学出版社, 2006.
Zhou Yun. Structural design of viscous damper [M]. Wuhan: Wuhan University of Technology Press, 2006.
[19] GB50011-2010建筑抗震设计规范[S]. 北京: 中国建筑工业出版社出版, 2010.
GB50011-2010 Chinese Standard for seismic design of buildings [S]. Beijing: China architecture & building press, 2010.

PDF(2952 KB)

392

Accesses

0

Citation

Detail

段落导航
相关文章

/