考虑单级直齿轮副,构建Poincaré映射,应用初值胞映射法、延拓打靶法以及数值仿真求解并追踪系统的共存吸引子及其演化,计算Jacobi矩阵的特征值,根据Floquet理论确定周期吸引子的稳定性与分岔类型,应用胞映射法计算吸引域,研究共存吸引子的分岔特征,揭示系统在极小参数区间存在的容易隐藏的吸引子信息以及鞍结型擦边分岔和混沌激变等不连续分岔行为。在一定参数条件下,单级直齿轮副存在大量的多吸引子共存现象以及周期倍化和鞍结分岔。由于非光滑因素的影响,擦边诱导的鞍结分岔引起系统终态的跳跃和迟滞。研究结果可为直齿轮副动力学行为的评价以及系统参数设计与优化提供指导。
Abstract
A single-stage spur gear pair is considered, and the Poincaré mapping is constructed. The coexisting attractors of the system and their evolutions are calculated and traced by applying initial value cell mapping method, continuation shooting method and numerical simulation. The eigenvalues of Jacobi matrix are calculated, and the stability and the type of bifurcation are determined by means of the Floquet theory. The basins of attraction are calculated by using cell mapping method. The bifurcation characteristics of coexisting attractors are studied, and the attractors existing in the minimum interval of system parameters, which are not easy to be found, are revealed as well as discontinuous bifurcation behaviors including saddle-node type of grazing bifurcation and chaos crisis. There are a large number of coexistence phenomena of multiple attractors and period-doubling and saddle-node bifurcations in the single-stage spur gear pair under certain parameter conditions. Due to the influence of non-smooth factor, the grazing-induced saddle-node bifurcation leads to the jump and hysteresis of final-state response of the system. The results can provide guidance for the evaluation of dynamic behavior of spur gear pair and the design and optimization of system parameters.
关键词
齿轮 /
共存吸引子 /
稳定性 /
分岔 /
激变
{{custom_keyword}} /
Key words
Gear /
coexisting attractors /
stability /
bifurcation /
crisis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shen Y J, Yang S P, Liu X D. Nonlinear dynamics of a Spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method[J]. International Journal of Mechanical Sciences, 2006, 48(11): 1256-1263.
[2] 李 华,沈允文,孙智民. 基于A-算符方法的齿轮系统的分岔与混沌[J]. 机械工程学报,2002, 38(6): 11-15.
LI Hua, SHEN Yun-wen, SUN Zhi-min. Bifurcation and chaotic behavior of geared system with clearances based on the A-operator method[J]. Chinese Journal of Mechanical Engineering, 2002, 38(6): 11-15.
[3] Natsiavas S, Theodossiades S, Goudas I. Dynamic analysis of piecewise linear oscillators with time periodic coefficients[J]. International Journal of Non-Linear Mechanics, 2000, 35(1): 53-68.
[4] Wei S, Han Q K, Dong X J, et al. Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty[J]. Nonlinear Dynamics, 2017, 89(1): 49-60.
[5] 苟向锋,朱凌云,陈代林,等. 参数耦合对单自由度直齿圆柱齿轮系统动态特性影响分析[J]. 振动工程学报,2017, 30(2): 202-213.
GOU Xiang-feng, ZHU Ling-yun, CHEN Dai-lin, et al. Analysis of effect of parameters coupling on the dynamic characteristics of a single degree-of-freedom spur gear system[J]. Journal of Vibration Engineering, 2017, 30(2): 202-213.
[6] Yang Y, Cao L Y, Li H, et al. Nonlinear dynamic response of a spur gear pair based on the modeling of periodic mesh stiffness and static transmission error[J]. Applied Mathematical Modelling, 2019, 72: 444-469.
[7] 郜志英,沈允文,李素有. 间隙非线性齿轮系统周期解结构及其稳定性研究[J]. 机械工程学报,2004(5): 17-22.
GAO Zhi-ying, SHEN Yun-wen, LI Su-you. Research on the periodic solution structure and its stability of nonlinear gear system with clearance[J]. Chinese Journal of Mechanical Engineering, 2004(5): 17-22.
[8] 高建设,崔秉奇,丁顺良,等. 齿轮-轴承传动系统擦边碰撞的动力学特性分析[J]. 振动与冲击, 2022, 41(13): 1-7.
GAO Jian-she, CUI Bing-qi, DING Shun-liang, et al. Dynamic characteristics analysis of grazing impact of gear-bearing transmission system[J]. Journal of Vibration and Shock, 2022, 41(13): 1-7.
[9] 尹 桩,苟向锋,朱凌云. 考虑齿面冲击及摩擦的单级齿轮系统动力学建模及分析[J]. 振动工程学报,2018, 31(06): 974-983.
YIN Zhuang, GOU Xiang-feng, ZHU Ling-yun. Dynamic modeling and analysis of single-stage gear system considering tooth surface impact and friction[J]. Journal of Vibration Engineering, 2018, 31(06): 974-983.
[10] 刘梦军,沈允文,董海军. 齿轮系统参数对全局特性影响的研究[J].机械工程学报,2004, 40(11): 58-63.
LIU Meng-jun, SHEN Yun-wen, DONG Hai-jun. Research on the affection of the gear system parameters on the global character[J]. Chinese Journal of Mechanical Engineering, 2004, 40(11): 58-63.
[11] 刘 莉,徐 伟,岳晓乐,等. 一类含非黏滞阻尼的Duffing单边碰撞系统的激变研究[J]. 物理学报,2013, 62(20): 1-8.
LIU Li, XU Wei, YUE Xiao-le, et al. Global analysis of crises in a Duffing vibro-impact oscillator with non-viscously damping[J]. Acta Physica Sinica, 2013, 62(20): 1-8.
[12] 唐进元,熊兴波,陈思雨. 基于图胞映射方法的单自由度非线性齿轮系统全局特性分析[J]. 机械工程学报,2011, 47(5): 59-65.
TANG Jin-yuan, XIONG Xing-bo, CHEN Si-yu. Analysis of global character of single degree of freedom nonlinear gear system based on digraph cell mapping method[J]. Journal of Mechanical Engineering, 2011, 47(5): 59-65.
[13] Shi J F, Gou X F, Zhu L Y. Bifurcation of multi-stable behaviors in a two-parameter plane for a non-smooth nonlinear system with time-varying parameters[J]. Nonlinear Dynamics, 2020, 10, 3347-3365.
[14] 张锦涛,王 昕,吕小红,等. Duffing系统共存周期解的稳定性与分岔演化[J]. 噪声与振动控制,2022, 42(04): 46-51.
ZHANG Jin-tao, WANG Xin, LÜ Xiao-hong, et al. Stability and bifurcation evolution of coexisting periodic solutions of Duffing system[J]. Noise and Vibration Control, 2022, 42(04): 46-51.
[15] Jiang H B, Chong A S E, Ueda Y, et al. Grazing-induced bifurcations in impact oscillators with elastic and rigid constraints[J]. International Journal of Mechanical Sciences, 2017, 127(7): 204-214.
[16] Zhang W, Li Q H, Meng Z C. Complex bifurcation analysis of an impacting vibration system based on path-following method[J]. International Journal of Non-Linear Mechanics, 2021, 133(2): 103715.
[17] Tan Z, Yin S, Wen G L, et al. Near-grazing bifurcations and deep reinforcement learning control of an impact oscillator with elastic constraints[J]. Meccanica, 2022.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}